Daten-Labeling-Job für die Bildsegmentierung erstellen
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Erstellt einen Daten-Labeling-Job für die Bildsegmentierung mit der Methode "create_data_labeling_job".
Codebeispiel
Nächste Schritte
Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],[],[],[],null,["# Create a data labeling job for image segmentation\n\nCreates a data labeling job for image segmentation using the create_data_labeling_job method.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google.cloud import aiplatform\n from google.protobuf import json_format\n from google.protobuf.struct_pb2 import Value\n\n\n def create_data_labeling_job_image_segmentation_sample(\n project: str,\n display_name: str,\n dataset: str,\n instruction_uri: str,\n inputs_schema_uri: str,\n annotation_spec: dict,\n annotation_set_name: str,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform.gapic.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.job_service.JobServiceClient.html(client_options=client_options)\n inputs_dict = {\"annotationSpecColors\": [annotation_spec]}\n inputs = json_format.ParseDict(inputs_dict, Value())\n\n data_labeling_job = {\n \"display_name\": display_name,\n # Full resource name: projects/{project}/locations/{location}/datasets/{dataset_id}\n \"datasets\": [dataset],\n \"labeler_count\": 1,\n \"instruction_uri\": instruction_uri,\n \"inputs_schema_uri\": inputs_schema_uri,\n \"inputs\": inputs,\n \"annotation_labels\": {\n \"aiplatform.googleapis.com/annotation_set_name\": annotation_set_name\n },\n }\n parent = f\"projects/{project}/locations/{location}\"\n response = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.job_service.JobServiceClient.html#google_cloud_aiplatform_v1_services_job_service_JobServiceClient_create_data_labeling_job(\n parent=parent, data_labeling_job=data_labeling_job\n )\n print(\"response:\", response)\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]