RetinaNet auf Cloud TPU trainieren (TF 2.x)

In diesem Dokument wird eine Implementierung des RetinaNet-Objekterkennungsmodells erläutert. Der Code ist auf GitHub verfügbar.

In der folgenden Anleitung wird davon ausgegangen, dass Sie bereits mit dem Ausführen eines Modells auf Cloud TPU vertraut sind. Wenn Sie Cloud TPU noch nicht kennen, finden Sie in der Kurzanleitung eine grundlegende Einführung.

Wenn Sie auf einem TPU Pod-Slice trainieren möchten, lesen Sie Auf TPU Pods trainieren, um mehr über Parameteränderungen für Pod-Slices zu erfahren.

Ziele

  • COCO-Dataset vorbereiten
  • Cloud Storage-Bucket zum Speichern der Dataset- und Modellausgabe erstellen
  • TPU-Ressourcen für Training und Evaluierung einrichten
  • Training und Bewertung auf einer einzelnen Cloud TPU oder einem Cloud TPU Pod ausführen

Kosten

In dieser Anleitung werden die folgenden kostenpflichtigen Komponenten von Google Cloud verwendet:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Hinweis

Bevor Sie mit dieser Anleitung beginnen, prüfen Sie, ob Ihr Google Cloud-Projekt ordnungsgemäß eingerichtet ist.

  1. Melden Sie sich bei Ihrem Google Cloud-Konto an. Wenn Sie mit Google Cloud noch nicht vertraut sind, erstellen Sie ein Konto, um die Leistungsfähigkeit unserer Produkte in der Praxis sehen und bewerten zu können. Neukunden erhalten außerdem ein Guthaben von 300 $, um Arbeitslasten auszuführen, zu testen und bereitzustellen.
  2. Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.

    Zur Projektauswahl

  3. Die Abrechnung für das Cloud-Projekt muss aktiviert sein. So prüfen Sie, ob die Abrechnung für Ihr Projekt aktiviert ist.

  4. Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.

    Zur Projektauswahl

  5. Die Abrechnung für das Cloud-Projekt muss aktiviert sein. So prüfen Sie, ob die Abrechnung für Ihr Projekt aktiviert ist.

  6. In dieser Anleitung werden kostenpflichtige Komponenten der Google Cloud verwendet. Rufen Sie die Seite mit den Cloud TPU-Preisen auf, um Ihre Kosten abzuschätzen. Denken Sie daran, nicht mehr benötigte Ressourcen zu bereinigen, um unnötige Kosten zu vermeiden.

COCO-Dataset vorbereiten

In dieser Anleitung wird das COCO-Dataset verwendet. Das Dataset muss im TFRecord-Format in einem Cloud Storage-Bucket vorliegen, der für das Training verwendet werden soll.

Wenn Sie das COCO-Dataset bereits in einem Cloud Storage-Bucket vorbereitet haben, der sich im Zone befindet, die Sie für das Modell trainieren verwenden werden, können Sie direkt zu Training mit einem einzelnen Gerät wechseln. Führen Sie andernfalls folgende Schritte aus, um das Dataset vorzubereiten.

  1. Öffnen Sie ein Cloud Shell-Fenster.

    Cloud Shell öffnen

  2. Erstellen Sie in Ihrer Cloud Shell mit folgendem Befehl einen Cloud Storage-Bucket:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 gs://bucket-name
    
  3. Starten Sie eine Compute Engine-VM-Instanz.

    Diese VM-Instanz wird ausschließlich zum Herunterladen und Vorverarbeiten des COCO-Datasets verwendet. Geben Sie in instance-name einen Namen Ihrer Wahl ein.

    $ gcloud compute tpus execution-groups create \
     --vm-only \
     --name=instance-name \
     --zone=europe-west4-a \
     --disk-size=300 \
     --machine-type=n1-standard-16 \
     --tf-version=2.7.0
    

    Beschreibung der Befehls-Flags

    vm-only
    Erstellen Sie nur eine VM. Standardmäßig werden mit dem Befehl gcloud compute tpus execution-groups eine VM und eine Cloud TPU erstellt.
    name
    Der Name der zu erstellenden Cloud TPU.
    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    disk-size
    Die Größe des Laufwerks in GB der VM, die mit dem Befehl gcloud compute tpus execution-groups erstellt wurde.
    machine-type
    Der Maschinentyp der zu erstellenden Compute Engine-VM.
    tf-version
    Die Version von Tensorflow, die von gcloud compute tpus execution-groups auf der VM installiert wird.
  4. Wenn Sie nicht automatisch bei der Compute Engine-Instanz angemeldet werden, melden Sie sich mit dem folgenden ssh-Befehl an. Wenn Sie bei der VM angemeldet sind, ändert sich die Shell-Eingabeaufforderung von username@projectname in username@vm-name:

      $ gcloud compute ssh instance-name --zone=europe-west4-a
      

  5. Richten Sie zwei Variablen ein, eine für den zuvor erstellten Storage-Bucket und eine für das Verzeichnis, das die Trainingsdaten (DATA_DIR) im Storage-Bucket enthält.

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
  6. Installieren Sie die Pakete, die für die Vorverarbeitung der Daten erforderlich sind.

    (vm)$ sudo apt-get install -y python3-tk && \
      pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow && \
      pip3 install --user "git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI"
    
  7. Führen Sie das Skript download_and_preprocess_coco.sh aus, um das COCO-Dataset in einen Satz von TFRecords (*.tfrecord) zu konvertieren, der von der Trainingsanwendung erwartet wird.

    (vm)$ git clone https://github.com/tensorflow/tpu.git
    (vm)$ sudo bash tpu/tools/datasets/download_and_preprocess_coco.sh ./data/dir/coco
    

    Dadurch werden die erforderlichen Bibliotheken installiert und das Skript für die Vorverarbeitung ausgeführt. Dann werden verschiedene *.tfrecord-Dateien in Ihr lokales Datenverzeichnis ausgegeben. Der COCO-Download und das Ausführen des Konvertierungsskripts dauern ungefähr eine Stunde.

  8. Daten in den Cloud Storage-Bucket kopieren

    Nachdem Sie die Daten in TFRecords konvertiert haben, kopieren Sie sie mit dem Befehl gsutil aus dem lokalen Speicher in den Cloud Storage-Bucket. Die Annotationsdateien müssen ebenfalls kopiert werden. Diese Dateien helfen dabei, die Leistung des Modells zu validieren.

    (vm)$ gsutil -m cp ./data/dir/coco/*.tfrecord ${DATA_DIR}
    (vm)$ gsutil cp ./data/dir/coco/raw-data/annotations/*.json ${DATA_DIR}
    
  9. Bereinigen Sie die VM-Ressourcen.

    Nachdem das COCO-Dataset in TFRecords konvertiert und in DATA_DIR in Ihrem Cloud Storage-Bucket kopiert wurde, können Sie die Compute Engine-Instanz löschen.

    Trennen Sie die Verbindung zur Compute Engine-Instanz:

    (vm)$ exit
    

    Die Eingabeaufforderung sollte nun username@projectname lauten und angeben, dass Sie sich in Cloud Shell befinden.

  10. Löschen Sie die Compute Engine-Instanz.

      $ gcloud compute instances delete instance-name
        --zone=europe-west4-a
      

Retinanet auf einem TPU-Einzelgerät trainieren

Wenn Sie auf einem TPU Pod-Slice trainieren möchten, lesen Sie Auf TPU Pods trainieren, um mehr über die Änderungen nötig für Trainieren auf Pod-Slices zu erfahren.

  1. Öffnen Sie ein Cloud Shell-Fenster.

    Zu Cloud Shell

  2. Erstellen Sie eine Variable für Ihre Projekt-ID.

    export PROJECT_ID=project-id
    
  3. Konfigurieren Sie das gcloud-Befehlszeilentool für das Projekt, in dem Sie eine Cloud TPU erstellen möchten.

    gcloud config set project ${PROJECT_ID}
    

    Wenn Sie diesen Befehl zum ersten Mal in einer neuen Cloud Shell-VM ausführen, wird die Seite Authorize Cloud Shell angezeigt. Klicken Sie auf Authorize unten auf der Seite, damit gcloud GCP API-Aufrufe mit Ihren Anmeldedaten durchführen kann.

  4. Erstellen Sie ein Dienstkonto für das Cloud TPU-Projekt.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    Der Befehl gibt ein Cloud TPU-Dienstkonto im folgenden Format zurück:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Erstellen Sie mit dem folgenden Befehl einen Cloud Storage-Bucket:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 gs://bucket-name
    

    Dieser Cloud Storage-Bucket speichert die Daten, die Sie zum Trainieren Ihres Modells verwenden, und die Trainingsergebnisse. Mit dem gcloud-Befehl, der in dieser Anleitung zum Einrichten der TPU verwendet wird, werden auch Standardberechtigungen für das Cloud TPU-Dienstkonto eingerichtet, das Sie im vorherigen Schritt eingerichtet haben. Wenn Sie detailliertere Berechtigungen benötigen, können Sie die Berechtigungen auf Zugriffsebene anpassen.

Cloud TPU einrichten und starten

  1. Starten Sie mit dem Befehl gcloud eine Compute Engine-VM und eine Cloud TPU. Der verwendete Befehl hängt davon ab, ob Sie TPU-VMs oder TPU-Knoten verwenden. Weitere Informationen zu beiden VM-Architekturen finden Sie unter Systemarchitektur.

    TPU-VM

    $ gcloud alpha compute tpus tpu-vm create retinanet-tutorial \
    --zone=europe-west4-a \
    --accelerator-type=v3-8 \
    --version=v2-alpha
    

    Beschreibung der Befehls-Flags

    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    accelerator-type
    Der Typ der zu erstellenden Cloud TPU.
    version
    Die Version der Cloud TPU-Laufzeit.

    TPU-Knoten

    $ gcloud compute tpus execution-groups create  \
     --zone=europe-west4-a \
     --name=retinanet-tutorial \
     --accelerator-type=v3-8 \
     --machine-type=n1-standard-8 \
     --disk-size=300 \
     --tf-version=2.7.0
    

    Beschreibung der Befehls-Flags

    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    accelerator-type
    Der Typ der zu erstellenden Cloud TPU.
    machine-type
    Der Maschinentyp der zu erstellenden Compute Engine-VM.
    disk-size
    Die Größe des Stamm-Volumes Ihrer Compute Engine-VM (in GB).
    tf-version
    Die Version von Tensorflow, die von gcloud auf der VM installiert wird.

    Weitere Informationen zum Befehl gcloud finden Sie in der gcloud-Referenz.

  2. Wenn Sie nicht automatisch bei der Compute Engine-Instanz angemeldet werden, melden Sie sich mit dem folgenden ssh-Befehl an. Wenn Sie bei der VM angemeldet sind, ändert sich die Shell-Eingabeaufforderung von username@projectname in username@vm-name:

    TPU-VM

    gcloud alpha compute tpus tpu-vm ssh retinanet-tutorial --zone=europe-west4-a
    

    TPU-Knoten

    gcloud compute ssh retinanet-tutorial --zone=europe-west4-a
    

    Führen Sie im weiteren Verlauf dieser Anleitung jeden Befehl, der mit (vm)$ beginnt, in Ihrem VM-Sitzungsfenster aus.

  3. Zusätzliche Pakete installieren

    Die RetinaNet-Trainingsanwendung erfordert mehrere zusätzliche Pakete. Installieren Sie diese jetzt:

    (vm)$ sudo apt-get install -y python3-tk
    (vm)$ pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow
    
    (vm)$ pip3 install --user 'git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI'
    
  4. Installieren Sie TensorFlow-Anforderungen.

    TPU-VM

    (vm)$ git clone https://github.com/tensorflow/models.git
    (vm)$ pip3 install -r models/official/requirements.txt
    

    TPU-Knoten

    (vm)$ pip3 install --user -r /usr/share/models/official/requirements.txt
    
  5. Legen Sie die Cloud TPU-Namensvariable fest.

    TPU-VM

    (vm)$ export TPU_NAME=local
    

    TPU-Knoten

    (vm)$ export TPU_NAME=retinanet-tutorial
    
  6. Fügen Sie Umgebungsvariablen für die Daten- und Modellverzeichnisse hinzu.

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/retinanet-train
    
  7. Legen Sie die Umgebungsvariable PYTHONPATH fest:

    TPU-VM

    (vm)$ export PYTHONPATH="${PWD}/models:${PYTHONPATH}"
    

    TPU-Knoten

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/models"
    
  8. Wechseln Sie zum Verzeichnis, in dem sich das Modell befindet:

    TPU-VM

    (vm)$ cd ~/models/official/vision/detection
    

    TPU-Knoten

    (vm)$ cd /usr/share/models/official/vision/detection
    

Einzelnes Cloud TPU-Gerät trainieren

Die folgenden Trainingsskripts wurden auf einer Cloud TPU v3-8 ausgeführt. Sie können sie auch auf einer Cloud TPU v2-8 ausführen, es dauert dann allerdings länger.

Dieses Beispielskript unten trainiert nur 10 Schritte und dauert weniger als 5 Minuten, um auf einem v3-8-TPU-Knoten ausgeführt zu werden. Das Trainieren zur Konvergenz dauert etwa 22.500 Schritte und etwa eineinhalb Stunden auf einer Cloud-TPU v3-8.

  1. Richten Sie die folgenden Umgebungsvariablen ein:

    (vm)$ export RESNET_CHECKPOINT=gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    
  2. Führen Sie das Trainingsskript aus:

    (vm)$ python3 main.py \
         --strategy_type=tpu \
         --tpu=${TPU_NAME} \
         --model_dir=${MODEL_DIR} \
         --mode="train" \
         --params_override="{ type: retinanet, train: { total_steps: 10, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 } }"
    

    Beschreibung der Befehls-Flags

    strategy_type
    Wenn Sie das RetinaNet-Modell auf einer TPU trainieren möchten, müssen Sie distribution_strategy auf tpu festlegen.
    tpu
    Der Name der Cloud TPU. Dieser wird mit der Umgebungsvariable TPU_NAME festgelegt.
    model_dir
    Der Cloud Storage-Bucket, in dem während des Trainings Prüfpunkte und Zusammenfassungen gespeichert werden. Sie können einen vorhandenen Ordner verwenden, um zuvor generierte Prüfpunkte zu laden, die auf einer TPU mit derselben Größe und TensorFlow-Version erstellt wurden.
    mode
    Legen Sie hier train fest, um das Modell zu trainieren, oder eval, um das Modell zu bewerten.
    params_override
    Ein JSON-String, der Standardskriptparameter überschreibt. Weitere Informationen zu Skriptparametern finden Sie unter /usr/share/models/official/vision/detection/main.py.

Das Modell wird auf einer v3-8-TPU in zehn Schritten in etwa fünf Minuten trainiert. Nach Abschluss des Trainings sieht die Ausgabe in etwa so aus:

Train Step: 10/10  / loss = {
  'total_loss': 2.4581615924835205,
  'cls_loss': 1.4098565578460693,
  'box_loss': 0.012001709081232548,
  'model_loss': 2.0099422931671143,
  'l2_regularization_loss': 0.44821977615356445,
  'learning_rate': 0.008165999
}
/ training metric = {
  'total_loss': 2.4581615924835205,
  'cls_loss': 1.4098565578460693,
  'box_loss': 0.012001709081232548,
  'model_loss': 2.0099422931671143,
  'l2_regularization_loss': 0.44821977615356445,
 'learning_rate': 0.008165999
}

Bewertung eines einzelnen Cloud TPU-Geräts

Im folgenden Verfahren werden die COCO-Bewertungsdaten verwendet. Es dauert etwa zehn Minuten, um die Bewertungsschritte auf einer v3-8-TPU zu durchlaufen.

  1. Richten Sie die folgenden Umgebungsvariablen ein:

    (vm)$ export EVAL_SAMPLES=5000
    
  2. Führen Sie das Bewertungsskript aus:

    (vm)$ python3 main.py \
          --strategy_type=tpu \
          --tpu=${TPU_NAME} \
          --model_dir=${MODEL_DIR} \
          --checkpoint_path=${MODEL_DIR} \
          --mode=eval_once \
          --params_override="{ type: retinanet, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: ${EVAL_SAMPLES} } }"
    

    Beschreibung der Befehls-Flags

    strategy_type
    Die zu verwendende Verteilungsstrategie. Entweder tpu oder multi_worker_gpu.
    tpu
    Der Name der Cloud TPU. Dieser wird mit der Umgebungsvariable TPU_NAME festgelegt.
    model_dir
    Der Cloud Storage-Bucket, in dem während des Trainings Prüfpunkte und Zusammenfassungen gespeichert werden. Sie können einen vorhandenen Ordner verwenden, um zuvor generierte Prüfpunkte zu laden, die auf einer TPU mit derselben Größe und TensorFlow-Version erstellt wurden.
    mode
    Entweder train, eval oder train_and_eval.
    params_override
    Ein JSON-String, der Standardskriptparameter überschreibt. Weitere Informationen zu Skriptparametern finden Sie unter /usr/share/models/official/vision/detection/main.py.

    Am Ende der Bewertung werden in der Konsole Meldungen wie die folgenden angezeigt:

    Accumulating evaluation results...
    DONE (t=7.66s).
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
    

Sie haben jetzt das Training und die Bewertung für ein einzelnes Gerät abgeschlossen. Führen Sie die folgenden Schritte aus, um die aktuellen Ressourcen des TPU-Einzelgeräts zu löschen.

  1. Trennen Sie die Verbindung zur Compute Engine-Instanz:

    (vm)$ exit
    

    Die Eingabeaufforderung sollte nun username@projectname lauten und angeben, dass Sie sich in Cloud Shell befinden.

  2. Löschen Sie die TPU-Ressource.

    TPU-VM

    $ gcloud alpha compute tpus tpu-vm delete retinanet-tutorial \
    --zone=europe-west4-a
    

    Beschreibung der Befehls-Flags

    zone
    Die Zone, in der sich Ihre Cloud TPU befindet.

    TPU-Knoten

    $ gcloud compute tpus execution-groups delete retinanet-tutorial \
    --tpu-only \
    --zone=europe-west4-a
    

    Beschreibung der Befehls-Flags

    tpu-only
    Löscht nur die Cloud TPU. Die VM bleibt verfügbar.
    zone
    Die Zone, in der die zu löschende TPU enthalten ist.

An dieser Stelle können Sie entweder diese Anleitung beenden und eine Bereinigung durchführen oder die Ausführung des Modells auf Cloud TPU Pods fortsetzen.

Modell mit Cloud TPU Pods skalieren

Retinanet auf einem TPU-Pod trainieren

  1. Öffnen Sie ein Cloud Shell-Fenster.

    Zu Cloud Shell

  2. Erstellen Sie eine Variable für Ihre Projekt-ID.

    export PROJECT_ID=project-id
    
  3. Konfigurieren Sie das gcloud-Befehlszeilentool für das Projekt, in dem Sie eine Cloud TPU erstellen möchten.

    gcloud config set project ${PROJECT_ID}
    

    Wenn Sie diesen Befehl zum ersten Mal in einer neuen Cloud Shell-VM ausführen, wird die Seite Authorize Cloud Shell angezeigt. Klicken Sie auf Authorize unten auf der Seite, damit gcloud GCP API-Aufrufe mit Ihren Anmeldedaten durchführen kann.

  4. Erstellen Sie ein Dienstkonto für das Cloud TPU-Projekt.

    Dienstkonten ermöglichen dem Cloud TPU-Dienst, auf andere Google Cloud Platform-Dienste zuzugreifen.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    Der Befehl gibt ein Cloud TPU-Dienstkonto im folgenden Format zurück:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Erstellen Sie mit dem folgenden Befehl einen Cloud Storage-Bucket oder verwenden Sie einen Bucket, den Sie zuvor für Ihr Projekt erstellt haben:

    Ersetzen Sie im folgenden Befehl europe-west4 durch den Namen der Region, die Sie zum Ausführen des Trainings verwenden möchten. Ersetzen Sie bucket-name durch den Namen, den Sie dem Bucket zuweisen möchten.

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 gs://bucket-name
    

    Dieser Cloud Storage-Bucket speichert die Daten, die Sie zum Trainieren Ihres Modells verwenden, und die Trainingsergebnisse. Mit dem in dieser Anleitung verwendeten gcloud-Befehl werden Standardberechtigungen für das Cloud TPU-Dienstkonto eingerichtet, das Sie im vorherigen Schritt eingerichtet haben. Wenn Sie genauere Berechtigungen benötigen, können Sie die Berechtigungen auf Zugriffsebene anpassen.

    Der Bucket-Standort muss sich in derselben Region wie die TPU-Ressourcen befinden.

  6. Wenn Sie das COCO-Dataset bereits vorbereitet und in den Storage-Bucket verschoben haben, können Sie es für das Pod-Training wiederverwenden. Wenn Sie das COCO-Dataset noch nicht vorbereitet haben, bereiten Sie es jetzt vor und kehren Sie dann hierher zurück, um das Training einzurichten.

  7. Cloud TPU Pod einrichten und starten

    In dieser Anleitung wird ein v3-32-Pod angegeben. Weitere Pod-Optionen finden Sie auf der Seite zu verfügbaren TPU-Typen.

    TPU-VM

    Starten Sie einen TPU-VM-Pod mit dem Befehl gcloud alpha compute tpus tpu-vm. In dieser Anleitung wird ein v3-32-Pod angegeben. Weitere Pod-Optionen finden Sie auf der Seite zu verfügbaren TPU-Typen.

    $ gcloud alpha compute tpus tpu-vm create retinanet-tutorial \
    --zone=europe-west4-a \
    --accelerator-type=v3-32 \
    --version=v2-alpha-pod
    

    Beschreibung der Befehls-Flags

    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    accelerator-type
    Der Typ der zu erstellenden Cloud TPU.
    version
    Die Version der Cloud TPU-Laufzeit.

    TPU-Knoten

    Führen Sie den Befehl gcloud compute tpus execution-groups mit dem Parameter accelerator-type aus, um das Pod-Slice anzugeben, das Sie verwenden möchten. Der folgende Befehl verwendet beispielsweise ein v3-32-Pod-Slice.

    $ gcloud compute tpus execution-groups create  \
     --zone=europe-west4-a \
     --name=retinanet-tutorial \
     --accelerator-type=v3-32 \
     --machine-type=n1-standard-8 \
     --disk-size=300 \
     --tf-version=2.7.0 

    Beschreibung der Befehls-Flags

    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    name
    Der TPU-Name. Ist standardmäßig Ihr Nutzername, wenn nichts anderes angegeben ist.
    accelerator-type
    Der Typ der zu erstellenden Cloud TPU.
    machine-type
    Der Maschinentyp der zu erstellenden Compute Engine-VM.
    tf-version
    Die Version von Tensorflow, die von gcloud auf der VM installiert wird.
  8. Wenn Sie nicht automatisch bei der Compute Engine-Instanz angemeldet werden, melden Sie sich mit dem folgenden ssh-Befehl an. Wenn Sie bei der VM angemeldet sind, ändert sich die Shell-Eingabeaufforderung von username@projectname in username@vm-name:

    TPU-VM

    gcloud alpha compute tpus tpu-vm ssh retinanet-tutorial --zone=europe-west4-a
    

    TPU-Knoten

    gcloud compute ssh retinanet-tutorial --zone=europe-west4-a
    
  9. Legen Sie die Cloud TPU-Namensvariable fest.

    (vm)$ export TPU_NAME=retinanet-tutorial
    
  10. Cloud Storage-Bucket-Variablen festlegen

    Richten Sie die folgenden Umgebungsvariablen ein und ersetzen Sie bucket-name durch den Namen Ihres Cloud Storage-Buckets:

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/retinanet-train
    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
    

    Die Trainingsanwendung erwartet, dass Ihre Trainingsdaten in Cloud Storage verfügbar sind. Die Trainingsanwendung verwendet auch Ihren Cloud Storage-Bucket, um während des Trainings Prüfpunkte zu speichern.

  11. Zusätzliche Pakete installieren

    Die RetinaNet-Trainingsanwendung erfordert mehrere zusätzliche Pakete. Installieren Sie diese jetzt:

    (vm)$ sudo apt-get install -y python3-tk
    (vm)$ pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow
    (vm)$ pip3 install --user 'git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI' 
  12. Installieren Sie TensorFlow-Anforderungen.

    TPU-VM

    (vm)$ git clone https://github.com/tensorflow/models.git
    (vm)$ pip3 install -r models/official/requirements.txt
    

    TPU-Knoten

    (vm)$ pip3 install --user -r /usr/share/models/official/requirements.txt
    
  13. Legen Sie erforderliche Umgebungsvariablen fest:

    (vm)$ export RESNET_PRETRAIN_DIR=gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    
  14. Legen Sie die Umgebungsvariable PYTHONPATH fest:

    TPU-VM

    (vm)$ export PYTHONPATH="${PWD}/models:${PYTHONPATH}"
    (vm)$ export TPU_LOAD_LIBRARY=0
    

    TPU-Knoten

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/models"
    
  15. Wechseln Sie zum Verzeichnis, in dem sich das Modell befindet:

    TPU-VM

    (vm)$ cd ~/models/official/vision/detection

    TPU-Knoten

    (vm)$ cd /usr/share/models/official/vision/detection
  16. Modell trainieren

    TPU-VM

    (vm)$ python3 main.py \
    --strategy_type=tpu \
    --tpu=${TPU_NAME} \
    --model_dir=${MODEL_DIR} \
    --mode=train \
    --model=retinanet \
    --params_override="{architecture: {use_bfloat16: true}, eval: {batch_size: 40, eval_file_pattern: ${EVAL_FILE_PATTERN}, val_json_file: ${VAL_JSON_FILE}}, postprocess: {pre_nms_num_boxes: 1000}, predict: {batch_size: 40}, train: {batch_size: 256, checkpoint: {path: ${RESNET_PRETRAIN_DIR}, prefix: resnet50/}, iterations_per_loop: 5000, total_steps: 5625, train_file_pattern: ${TRAIN_FILE_PATTERN}, } }" 

    Beschreibung der Befehls-Flags

    tpu
    Der Name Ihrer TPU.
    model_dir
    Gibt das Verzeichnis an, in dem während des Modelltrainings Prüfpunkte und Zusammenfassungen gespeichert werden. Wenn der Ordner fehlt, erstellt das Programm einen. Wenn Sie eine Cloud TPU verwenden, muss model_dir ein Cloud Storage-Pfad (gs://...) sein. Sie können einen vorhandenen Ordner wiederverwenden, um aktuelle Prüfpunktdaten zu laden und zusätzliche Prüfpunkte zu speichern, solange die vorherigen Prüfpunkte mit Cloud TPU derselben Größe und TensorFlow-Version erstellt wurden.
    params_override
    Ein JSON-String, der Standardskriptparameter überschreibt. Weitere Informationen zu Skriptparametern finden Sie unter ~/models/official/vision/detection/main.py.

    Mit diesem Verfahren wird das Modell für das COCO-Dataset für 5625 Trainingsschritte trainiert. Dieses Training dauert bei einer v3-32 Cloud TPU etwa 20 Minuten. Wenn das Training abgeschlossen ist, wird eine Meldung wie diese angezeigt:

    TPU-Knoten

    Das folgende Beispieltrainingsskript wurde auf einem Cloud TPU-v3-32-Pod ausgeführt. Dieses trainiert nur 10 Schritte und dauert weniger als 5 Minuten. Das Training zur Konvergenz erfordert 2.109 Schritte und dauert auf einem v3-32-TPU-Pod etwa 50 Minuten.

    (vm)$  python3 main.py \
    --strategy_type=tpu \
    --tpu=${TPU_NAME} \
    --model_dir=${MODEL_DIR} \
    --mode="train" \
    --params_override="{ type: retinanet, train: { total_steps: 10, batch_size: 256, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 } }" 

    Beschreibung der Befehls-Flags

    strategy_type
    Die zu verwendende Verteilungsstrategie. tpu oder multi_worker_gpu.
    tpu
    Gibt den Namen der Cloud TPU an. Dieser wird mit der Umgebungsvariable TPU_NAME festgelegt.
    model_dir
    Der Cloud Storage-Bucket, in dem während des Trainings Prüfpunkte und Zusammenfassungen gespeichert werden. Sie können einen vorhandenen Ordner verwenden, um zuvor generierte Prüfpunkte zu laden, die auf einer TPU mit derselben Größe und TensorFlow-Version erstellt wurden.
    mode
    Entweder train, eval oder train_and_eval.
    params_override
    Ein JSON-String, der Standardskriptparameter überschreibt. Weitere Informationen zu Skriptparametern finden Sie unter /usr/share/models/official/vision/detection/main.py.

Wenn das Training abgeschlossen ist, wird eine Meldung wie diese angezeigt:

TPU-VM

Train Step: 5625/5625  / loss = {'total_loss': 0.730501651763916,
'cls_loss': 0.3229793608188629, 'box_loss': 0.003082591574639082,
'model_loss': 0.4771089553833008, 'l2_regularization_loss': 0.2533927261829376,
'learning_rate': 0.08} / training metric = {'total_loss': 0.730501651763916,
'cls_loss': 0.3229793608188629, 'box_loss': 0.003082591574639082,
'model_loss': 0.4771089553833008, 'l2_regularization_loss': 0.2533927261829376,
'learning_rate': 0.08} 

TPU-Knoten

Train Step: 10/10  / loss = {'total_loss': 3.5455241203308105,
'cls_loss': 1.458828330039978, 'box_loss': 0.01220895815640688,
'model_loss': 2.0692763328552246, 'l2_regularization_loss': 1.4762479066848755,
'learning_rate': 0.008165999} / training metric = {'total_loss': 3.5455241203308105,
'cls_loss': 1.458828330039978, 'box_loss': 0.01220895815640688,
'model_loss': 2.0692763328552246, 'l2_regularization_loss': 1.4762479066848755,
'learning_rate': 0.008165999}

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

  1. Trennen Sie die Verbindung zur Compute Engine-VM:

    (vm)$ exit
    

    Die Eingabeaufforderung sollte nun username@projectname lauten und angeben, dass Sie sich in Cloud Shell befinden.

  2. Löschen Sie Ihre Cloud TPU- und Compute Engine-Ressourcen. Der Befehl zum Löschen Ihrer Ressourcen hängt davon ab, ob Sie TPU-VMs oder TPU-Knoten verwenden. Weitere Informationen finden Sie unter Systemarchitektur.

    TPU-VM

    $ gcloud alpha compute tpus tpu-vm delete retinanet-tutorial \
    --zone=europe-west4-a
    

    TPU-Knoten

    $ gcloud compute tpus execution-groups delete retinanet-tutorial \
    --zone=europe-west4-a
    
  3. Prüfen Sie, ob die Ressourcen gelöscht wurden. Führen Sie dazu gcloud compute tpus execution-groups list aus. Der Löschvorgang kann einige Minuten dauern. Eine Antwort wie die folgende gibt an, dass Ihre Instanzen erfolgreich gelöscht wurden.

    $ gcloud compute tpus execution-groups list --zone=europe-west4-a
    
    Listed 0 items.
    
  4. Löschen Sie Ihren Cloud Storage-Bucket wie unten gezeigt mit gsutil. Ersetzen Sie bucket-name durch den Namen des Cloud Storage-Buckets.

    $ gsutil rm -r gs://bucket-name
    

Nächste Schritte

In den Cloud TPU-Anleitungen von TensorFlow wird das Modell in der Regel mithilfe eines Beispiel-Datasets trainiert. Die Ergebnisse dieses Trainings sind (in den meisten Fällen) nicht für die Inferenz verwendbar. Wenn Sie ein Modell für Inferenz verwenden möchten, können Sie die Daten in einem öffentlich verfügbaren Dataset oder in Ihrem eigenen Dataset trainieren. TensorFlow-Modelle, die auf Cloud TPUs trainiert werden, benötigen im Allgemeinen Datasets im Format TFRecord.

Sie können das Beispiel für das Dataset-Konvertierungstool verwenden, um ein Bildklassifizierungs-Dataset in das TFRecord-Format zu konvertieren. Wenn Sie kein Bildklassifizierungsmodell verwenden, müssen Sie das Dataset selbst in das TFRecords-Format konvertieren. Weitere Informationen finden Sie unter TFRecord und tf.Example

Hyperparameter-Feinabstimmung

Sie können die Hyperparameter des Modells optimieren, um die Leistung des Modells mit Ihrem Dataset zu verbessern. Informationen zu Hyperparametern, die für alle TPU-unterstützten Modelle üblich sind, finden Sie auf GitHub. Informationen zu modellspezifischen Hyperparametern finden Sie im Quellcode für die einzelnen Modelle. Weitere Informationen zur Hyperparameter-Abstimmung finden Sie unter Übersicht über Hyperparameter-Abstimmung, Hyperparameter-Abstimmungsdienst und Hyperparameter abstimmen.

Inferenz

Sobald Ihr Modell trainiert ist, können Sie es für Inferenz (auch als Vorhersage bezeichnet) verwenden. AI Platform ist eine cloudbasierte Lösung, mit der Sie Modelle für maschinelles Lernen entwickeln, trainieren und bereitstellen können. Sobald ein Modell bereitgestellt wurde, können Sie den AI Platform Prediction-Dienst verwenden.

Mit verschiedenen Bildgrößen trainieren

Sie können auch ein größeres Backbonenetzwerk wie ResNet-101 statt ResNet-50 ausprobieren. Ein größeres Eingabebild und ein leistungsfähigeres Backbonenetzwerk ergeben ein langsameres, aber präziseres Modell.

Andere Grundlage verwenden

Alternativ können Sie versuchen, ein ResNet-Modell im Voraus mit Ihrem eigenen Dataset zu trainieren und es als Grundlage für Ihr RetinaNet-Modell zu verwenden. Sie haben auch die Möglichkeit, ResNet durch ein alternatives Backbonenetzwerk zu ersetzen, was etwas arbeitsaufwändiger ist. Wenn Sie Ihre eigenen Objekterkennungsmodelle implementieren möchten, ist dieses Netzwerk möglicherweise eine gute Basis für weitere Experimente.