Diese Seite wurde von der Cloud Translation API übersetzt.
Switch to English

MNIST auf Cloud TPU ausführen (TF 2.x)

Diese Anleitung enthält eine allgemeine Beschreibung des MNIST-Modells, Anleitungen zum Herunterladen des TensorFlow-TPU-Codebeispiels für MNIST und eine Anleitung zum Ausführen des Codes in der Cloud TPU.

Haftungsausschluss

In dieser Anleitung wird ein Dataset eines Drittanbieters verwendet. Google bietet keine Zusicherungen, Gewährleistungen oder andere Garantien hinsichtlich der Gültigkeit oder anderer Aspekte dieses Datasets.

Modellbeschreibung

Das MNIST-Dataset enthält eine große Anzahl von Bildern handschriftlicher Ziffern im Bereich von 0 bis 9 sowie die Labels, die die Ziffer in jedem Bild identifizieren.

In dieser Anleitung wird ein ML-Modell trainiert, um Bilder basierend auf dem MNIST-Dataset zu klassifizieren. Nach dem Training klassifiziert das Modell eingehende Bilder in zehn Kategorien (0 bis 9) basierend auf den Erkenntnissen, die es über handgeschriebene Bilder aus dem MNIST-Dataset gewonnen hat. Sie können dem Modell dann ein Bild senden, das es zuvor noch nicht gesehen hat. Das Modell identifiziert die Ziffer im Bild basierend auf den beim Training gewonnen Erkenntnissen.

Das MNIST-Dataset besteht aus drei Teilen:

  • 60.000 Trainingsdatenbeispiele
  • 10.000 Testdatenbeispiele
  • 5.000 Validierungsdatenbeispiele

Weitere Informationen zum Dataset finden Sie auf der Website der MNIST-Datenbank.

Das Modell besteht aus sieben Ebenen:

  • 2 x Faltung
  • 2 x max. Pooling
  • 2 x Dichte (vollständig verbunden)
  • 1 x Dropout

Verlust wird über kategoriale Cross-Entropie berechnet.

Diese Version des MNIST-Modells verwendet die Keras API, die neben anderen Methoden zum Erstellen und Ausführen eines Modells für maschinelles Lernen auf einer Cloud TPU empfohlen wird.

Keras vereinfacht den Modellentwicklungsprozess, indem der Großteil der Implementierungen auf untergeordneter Eben ausgeblendet wird, wodurch auch ein Wechsel zwischen TPU und anderen Testplattformen wie GPUs oder CPUs erleichtert wird.

Ziele

  • Cloud Storage-Bucket zum Speichern der Dataset- und Modellausgabe erstellen
  • Trainingsjob ausführen
  • Ausgabeergebnisse überprüfen

Kosten

In dieser Anleitung werden kostenpflichtige Komponenten von Google Cloud verwendet, darunter:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Sie können mithilfe des Preisrechners die Kosten für Ihre voraussichtliche Nutzung kalkulieren. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Hinweise

Dieser Abschnitt enthält Informationen zum Einrichten eines Cloud Storage-Buckets und einer Compute Engine-VM.

  1. Öffnen Sie ein Cloud Shell-Fenster.

    Zu Cloud Shell

  2. Erstellen Sie eine Variable für Ihre Projekt-ID.

    export PROJECT_ID=project-id
    
  3. Konfigurieren Sie das gcloud-Befehlszeilentool für das Projekt, in dem Sie eine Cloud TPU erstellen möchten.

    gcloud config set project ${PROJECT_ID}
    

    Wenn Sie diesen Befehl zum ersten Mal in einer neuen Cloud Shell-VM ausführen, wird die Seite Authorize Cloud Shell angezeigt. Klicken Sie auf Authorize unten auf der Seite, um es gcloud zu erlauben, GCP API-Aufrufe mit Ihren Anmeldedaten durchzuführen.

  4. Erstellen Sie ein Dienstkonto für das Cloud TPU-Projekt.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    Der Befehl gibt ein Cloud TPU-Dienstkonto im folgenden Format zurück:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Erstellen Sie mit dem folgenden Befehl einen Cloud Storage-Bucket:

    gsutil mb -p ${PROJECT_ID} -c standard -l us-central1 -b on gs://bucket-name
    

    Dieser Cloud Storage-Bucket speichert die Daten, die Sie zum Trainieren Ihres Modells verwenden, und die Trainingsergebnisse. Mit dem in dieser Anleitung verwendeten gcloud-Befehl werden Standardberechtigungen für das Cloud TPU-Dienstkonto eingerichtet, das Sie im vorherigen Schritt eingerichtet haben. Wenn Sie detailliertere Berechtigungen benötigen, können Sie die Berechtigungen auf Zugriffsebene anpassen.

  6. Starten Sie mit dem Befehl gcloud eine Compute Engine-VM und eine Cloud TPU.

    $ gcloud compute tpus execution-groups create \
     --name=mnist-tutorial \
     --zone=us-central1-b \
     --tf-version=2.4.1 \
     --machine-type=n1-standard-1 \
     --accelerator-type=v3-8
    

    Beschreibung der Befehls-Flags

    name
    Der Name der zu erstellenden Cloud TPU.
    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    tf-version
    Die Version von Tensorflow, die der Befehl gcloud auf Ihrer VM installiert.
    machine-type
    Der Maschinentyp der zu erstellenden Compute Engine-VM.
    accelerator-type
    Der Typ der zu erstellenden Cloud TPU.

    Weitere Informationen zum Befehl gcloud finden Sie in der gcloud-Referenz.

  7. Wenn der Befehl gcloud compute tpus execution-groups ausgeführt wurde, sollten Sie prüfen, ob die Shell-Eingabeaufforderung von username@projectname zu username@vm-name geändert wurde. Diese Änderung bedeutet, dass Sie jetzt bei Ihrer Compute Engine-VM angemeldet sind.

    gcloud compute ssh mnist-tutorial --zone=us-central1-b
    

    Führen Sie im weiteren Verlauf dieser Anleitung jeden Befehl, der mit (vm)$ beginnt, in Ihrem VM-Sitzungsfenster aus.

  8. Erstellen Sie eine Umgebungsvariable für den TPU-Namen.

    (vm)$ export TPU_NAME=mnist-tutorial
    
  9. Installieren Sie ein zusätzliches Paket.

    Die MNIST-Trainingsanwendung erfordert ein zusätzliches Paket. Installieren Sie es jetzt.

    (vm)$ sudo pip3 install tensorflow-model-optimization>=0.1.3
    

Einzelnes Cloud TPU-Gerät trainieren

Der Quellcode für das MNIST-TPU-Modell ist auf GitHub verfügbar.

  1. Legen Sie die folgenden Variablen fest: Ersetzen Sie bucket-name durch den Namen Ihres Buckets.

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/mnist
    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/data
    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/models"
    
  2. Wechseln Sie zum Verzeichnis, in dem sich das Modell befindet:

    (vm)$ cd /usr/share/models/official/vision/image_classification
    
  3. Führen Sie das MNIST-Trainingsskript aus:

    (vm)$ python3 mnist_main.py \
      --tpu=${TPU_NAME} \
      --model_dir=${MODEL_DIR} \
      --data_dir=${DATA_DIR} \
      --train_epochs=10 \
      --distribution_strategy=tpu \
      --download
    

    Beschreibung der Befehls-Flags

    tpu
    Der Name der Cloud TPU. Wenn beim Einrichten der Compute Engine VM und Cloud TPU kein Name angegeben wird, wird standardmäßig Ihr Nutzername verwendet.
    model_dir
    Der Cloud Storage-Bucket, in dem während des Trainings Prüfpunkte und Zusammenfassungen gespeichert werden. Sie können einen vorhandenen Ordner verwenden, um zuvor generierte Prüfpunkte zu laden, die auf einer TPU mit derselben Größe und TensorFlow-Version erstellt wurden.
    data_dir
    Der Cloud Storage-Pfad der Trainingseingabe. In diesem Beispiel ist er auf das Dataset "fake_imagenet" festgelegt.
    train_epochs
    Die Anzahl der Epochen zum Trainieren des Modells.
    distribution_strategy
    Zum Trainieren des ResNet-Modells in einer Cloud TPU legen Sie für distribution_strategy den Wert tpu fest.
    download
    Ist true festgelegt, lädt das Skript das MNIST-Dataset herunter und verarbeitet es vor, sofern es noch nicht heruntergeladen wurde.

Auf einer Cloud TPU v3-8 wird das Trainingsskript in weniger als 5 Minuten ausgeführt. Die Ausgabe sieht in etwa so aus:

Run stats:
{
  'accuracy_top_1': 0.9762369990348816,
  'eval_loss': 0.07863274961709976,
  'loss': 0.1111728847026825,
  'training_accuracy_top_1': 0.966645359992981
}

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

  1. Trennen Sie die Verbindung zur Compute Engine-Instanz, sofern noch nicht geschehen:

    (vm)$ exit
    

    Die Eingabeaufforderung sollte nun username@projectname lauten und angeben, dass Sie sich in Cloud Shell befinden.

  2. Löschen Sie Ihre Cloud TPU- und Compute Engine-Ressourcen.

    $ gcloud compute tpus execution-groups delete mnist-tutorial \
      --zone=us-central1-b
    
  3. Prüfen Sie, ob die Ressourcen gelöscht wurden. Führen Sie dazu gcloud compute tpus execution-groups list aus. Der Löschvorgang kann einige Minuten dauern. Eine Antwort wie die folgende gibt an, dass Ihre Instanzen erfolgreich gelöscht wurden.

    $ gcloud compute tpus execution-groups list --zone=us-central1-b
    
    NAME             STATUS
    
  4. Löschen Sie Ihren Cloud Storage-Bucket wie unten gezeigt mit gsutil. Ersetzen Sie bucket-name durch den Namen des Cloud Storage-Buckets.

    $ gsutil rm -r gs://bucket-name
    

Nächste Schritte

In dieser Anleitung haben Sie das MNIST-Modell mit einem Beispiel-Dataset trainiert. Die Ergebnisse dieses Trainings sind in den meisten Fällen nicht für die Inferenz verwendbar. Wenn Sie ein Modell für die Inferenz verwenden möchten, können Sie die Daten in einem öffentlich verfügbaren Dataset oder in Ihrem eigenen Dataset trainieren. Für Modelle, die auf Cloud TPUs trainiert wurden, müssen Datasets das Format TFRecord haben.

Sie können das Beispiel für das Dataset-Konvertierungstool verwenden, um ein Bildklassifizierungs-Dataset in das TFRecord-Format zu konvertieren. Wenn Sie kein Bildklassifizierungsmodell verwenden, müssen Sie das Dataset selbst in das TFRecords-Format konvertieren. Weitere Informationen finden Sie unter TFRecord und tf.Example

Hyperparameter-Abstimmung

Sie können die Hyperparameter des Modells optimieren, um die Leistung des Modells mit Ihrem Dataset zu verbessern. Informationen zu Hyperparametern, die für alle TPU-unterstützten Modelle üblich sind, finden Sie auf GitHub. Informationen zu modellspezifischen Hyperparametern finden Sie im Quellcode für die einzelnen Modelle. Weitere Informationen zur Hyperparameter-Abstimmung finden Sie unter Übersicht über Hyperparameter-Abstimmung, Hyperparameter-Abstimmungsdienst und Hyperparameter abstimmen.

Inferenz

Sobald Ihr Modell trainiert ist, können Sie es für Inferenz (auch als Vorhersage bezeichnet) verwenden. AI Platform ist eine cloudbasierte Lösung, mit der Sie Modelle für maschinelles Lernen entwickeln, trainieren und bereitstellen können. Sobald ein Modell bereitgestellt wurde, können Sie den AI Platform Prediction-Dienst verwenden.