Diese Seite wurde von der Cloud Translation API übersetzt.
Switch to English

EfficientNet auf Cloud TPU trainieren (TF 2.x)

In dieser Anleitung erfahren Sie, wie Sie ein Keras EfficientNet-Modell auf Cloud TPU mit tf.distribute.TPUStrategy trainieren.

Wenn Sie nicht mit Cloud TPU vertraut sind, sollten Sie sich die Kurzanleitung durchlesen, um zu erfahren, wie Sie eine Cloud TPU und eine Compute Engine-VM erstellen.

Ziele

  • Cloud Storage-Bucket zum Speichern der Dataset- und Modellausgabe erstellen
  • Bereiten Sie ein Imitaten-Dataset vor, das dem ImageNet-Dataset ähnlich ist.
  • Trainingsjob ausführen
  • Ausgabeergebnisse überprüfen

Kosten

In dieser Anleitung werden kostenpflichtige Komponenten von Google Cloud verwendet, darunter:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Sie können mithilfe des Preisrechners die Kosten für Ihre voraussichtliche Nutzung kalkulieren. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Hinweise

Bevor Sie mit dieser Anleitung beginnen, prüfen Sie, ob Ihr Google Cloud-Projekt ordnungsgemäß eingerichtet ist.

  1. Melden Sie sich bei Ihrem Google-Konto an.

    Wenn Sie noch kein Konto haben, melden Sie sich hier für ein neues Konto an.

  2. Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.

    Zur Projektauswahl

  3. Die Abrechnung für das Cloud-Projekt muss aktiviert sein. So prüfen Sie, ob die Abrechnung für Ihr Projekt aktiviert ist.

  4. In dieser Anleitung werden kostenpflichtige Komponenten der Google Cloud verwendet. Rufen Sie die Seite mit den Cloud TPU-Preisen auf, um Ihre Kosten abzuschätzen. Denken Sie daran, nicht mehr benötigte Ressourcen zu bereinigen, um unnötige Kosten zu vermeiden.

Ressourcen einrichten

Dieser Abschnitt enthält Informationen zum Einrichten von Cloud Storage-, VM- und Cloud TPU-Ressourcen für Anleitungen.

  1. Öffnen Sie ein Cloud Shell-Fenster.

    Zu Cloud Shell

  2. Erstellen Sie eine Variable für Ihre Projekt-ID.

    export PROJECT_ID=project-id
    
  3. Konfigurieren Sie das gcloud-Befehlszeilentool für das Projekt, in dem Sie eine Cloud TPU erstellen möchten.

    gcloud config set project ${PROJECT_ID}
    

    Wenn Sie diesen Befehl zum ersten Mal in einer neuen Cloud Shell-VM ausführen, wird die Seite Authorize Cloud Shell angezeigt. Klicken Sie auf Authorize unten auf der Seite, um es gcloud zu erlauben, GCP API-Aufrufe mit Ihren Anmeldedaten durchzuführen.

  4. Erstellen Sie ein Dienstkonto für das Cloud TPU-Projekt.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    Der Befehl gibt ein Cloud TPU-Dienstkonto im folgenden Format zurück:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Erstellen Sie mit dem folgenden Befehl einen Cloud Storage-Bucket:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 -b on gs://bucket-name/
    

    Dieser Cloud Storage-Bucket speichert die Daten, die Sie zum Trainieren Ihres Modells verwenden, und die Trainingsergebnisse. Der in dieser Anleitung verwendete Befehl "gcloud compute tpus execution-groups" richtet Standardberechtigungen für das Cloud TPU-Dienstkonto ein, das Sie im vorherigen Schritt eingerichtet haben. Wenn Sie weitere Berechtigungen benötigen, können Sie die Berechtigungen auf Zugriffsebene anpassen.

    Der Bucket-Standort muss sich in derselben Region wie Ihre Compute Engine (VM) und Ihr Cloud TPU-Knoten befinden.

  6. Starten Sie mit dem Befehl gcloud compute tpus execution-groups eine Compute Engine-VM und eine Cloud TPU.

    gcloud compute tpus execution-groups create \
    --name=efficientnet-tutorial \
    --zone=europe-west4-a \
    --disk-size=300 \
    --machine-type=n1-standard-16 \
    --tf-version=2.4.1 \
    --accelerator-type=v3-8
    

    Beschreibung der Befehls-Flags

    project
    Die ID Ihres GCP-Projekts
    name
    Der Name der zu erstellenden Cloud TPU.
    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    disk-size
    Die Größe des Laufwerks in GB der VM, die mit dem Befehl gcloud erstellt wurde.
    machine-type
    Der Maschinentyp der zu erstellenden Compute Engine-VM.
    tf-version
    Die Version von Tensorflow, die von gcloud auf der VM installiert wird.
    vm-only
    Nur die Compute Engine-VM erstellen, keine Cloud TPU erstellen.
    accelerator-type
    Der Typ der zu erstellenden Cloud TPU.

Weitere Informationen zum Befehl gcloud finden Sie in der gcloud-Referenz.

Wenn der Befehl gcloud compute tpus execution-groups ausgeführt wurde, prüfen Sie, ob die Shell-Eingabeaufforderung von username@projectname in username@vm-name geändert wurde. Diese Änderung bedeutet, dass Sie jetzt bei Ihrer Compute Engine-VM angemeldet sind.

gcloud compute ssh efficientnet-tutorial --zone=europe-west4-a

Cloud Storage-Bucket-Variablen festlegen

Richten Sie die folgenden Umgebungsvariablen ein und ersetzen Sie bucket-name durch den Namen Ihres Cloud Storage-Buckets:

(vm)$ export STORAGE_BUCKET=gs://bucket-name
(vm)$ export MODEL_DIR=${STORAGE_BUCKET}/efficientnet-2x
(vm)$ export DATA_DIR=gs://cloud-tpu-test-datasets/fake_imagenet

Die Trainingsanwendung erwartet, dass Ihre Trainingsdaten in Cloud Storage verfügbar sind. Die Trainingsanwendung verwendet auch Ihren Cloud Storage-Bucket, um während des Trainings Prüfpunkte zu speichern.

EfficientNet-Modell mit fake_imagenet trainieren und evaluieren

ImageNet ist eine Bilddatenbank. Die Bilder in der Datenbank sind hierarchisch angeordnet, wobei jeder Knoten der Hierarchie durch Hunderte und Tausende von Bildern dargestellt wird.

In dieser Anleitung wird eine Demoversion des vollständigen ImageNet-Datasets verwendet, die als fake_imagenet bezeichnet wird. Wenn Sie die Anleitung mit dieser Demoversionen durcharbeiten, können Sie den Speicher- und Zeitaufwand reduzieren, der normalerweise mit dem Ausführen eines Modells für die gesamte ImageNet-Datenbank verbunden ist.

Das Dataset "fake_imagenet" befindet sich an diesem Speicherort in Cloud Storage:

gs://cloud-tpu-test-datasets/fake_imagenet

Das Dataset "fake_imagenet" dient nur zum Verständnis, wie eine Cloud TPU verwendet wird und wie die End-to-End-Leistung validiert wird. Die Genauigkeitszahlen und das gespeicherte Modell sind nicht aussagekräftig.

Informationen zum Herunterladen und Verarbeiten des vollständigen ImageNet-Datasets finden Sie unter Das ImageNet-Dataset herunterladen, vorverarbeiten und hochladen.

  1. Legen Sie die Cloud TPU-Namensvariable fest.

    (vm)$ export TPU_NAME=efficientnet-tutorial
    
  2. Das Trainingsskript EfficientNet erfordert zusätzliche Pakete. Installieren Sie diese jetzt:

    (vm)$ sudo pip3 install tensorflow-addons
    (vm)$ sudo pip3 install tensorflow-model-optimization>=0.1.3
    
  3. Fügen Sie dem Python-Pfad den obersten Ordner /models hinzu:

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/models/"
    

    Das EfficientNet-Modell ist auf Ihrer Compute Engine-VM vorinstalliert.

  4. Rufen Sie das Verzeichnis auf:

    (vm)$ cd /usr/share/models/official/vision/image_classification/
    
  5. Führen Sie das Trainingsskript aus. Dies verwendet ein fake_imagenet-Dataset und trainiert EfficientNet für eine Epoche.

    (vm)$ python3 classifier_trainer.py \
    --mode=train_and_eval \
    --model_type=efficientnet \
    --dataset=imagenet \
    --tpu=${TPU_NAME} \
    --data_dir=${DATA_DIR} \
    --model_dir=${MODEL_DIR} \
    --config_file=configs/examples/efficientnet/imagenet/efficientnet-b0-tpu.yaml \
    --params_override="train.epochs=1, train_dataset.builder=records, validation_dataset.builder=records"
    

    Beschreibung der Befehls-Flags

    mode
    train, eval oder train_and_eval.
    model_type
    Der Typ des Modells. Beispiel: efficientnet.
    dataset
    Der Name des Datasets. Beispiel: imagenet.
    tpu
    Der Name der Cloud TPU, um das Training oder die Bewertung auszuführen.
    data_dir
    Gibt den Cloud Storage-Pfad für die Trainingseingabe an. In diesem Beispiel ist er auf das Dataset "fake_imagenet" festgelegt.
    model_dir
    Der Cloud Storage-Pfad, in dem Prüfpunkte und Zusammenfassungen während des Modelltrainings gespeichert werden. Sie können einen vorhandenen Ordner wiederverwenden, um zuvor generierte Prüfpunkte zu laden und zusätzliche Prüfpunkte zu speichern, sofern die vorherigen Prüfpunkte mit einer Cloud TPU derselben Größe und TensorFlow-Version erstellt wurden.
    config_file
    Der Pfad zur JSON-Datei, die das vortrainierte Modell EfficientNet enthält. Diese Datei enthält die Modellarchitektur.
    params_override
    Ein JSON-String, der Standardskriptparameter überschreibt. Weitere Informationen zu Skriptparametern finden Sie unter /usr/share/models/official/vision/detection/main.py.

Dies führt zu einer Trainingsphase von EfficientNet für eine Epoche und wird in weniger als 10 Minuten auf einem v3-8-Cloud-TPU-Knoten abgeschlossen. Wenn das Trainingsskript abgeschlossen ist, wird eine Ausgabe wie die folgende angezeigt:

Run stats:
{
  'accuracy_top_1': 0.0010172526817768812,
  'eval_loss': 7.104171276092529,
  'loss': 7.113735675811768,
  'training_accuracy_top_1': 0.0009773431811481714,
  'step_timestamp_log': [
    'BatchTimestamp<batch_index: 0,
    timestamp: 1604960724.2224622>',
    'BatchTimestamp<batch_index: 1251,
    timestamp: 1604961281.3745298>'
  ],
  'train_finish_time': 1604961342.6359076,
  'avg_exp_per_second': 2071.493269569079
}

Führen Sie EfficientNet 90 Epochen lang aus, wie im folgenden Skript gezeigt. Training und Bewertung werden gemeinsam durchgeführt. Jede Epoche umfasst 1251 Schritte für insgesamt 112590 Trainingsschritte und 48 Bewertungsschritte.

   (vm)$ python3 classifier_trainer.py \
     --mode=train_and_eval \
     --model_type=efficientnet \
     --dataset=imagenet \
     --tpu=${TPU_NAME} \
     --data_dir=${DATA_DIR} \
     --model_dir=${MODEL_DIR} \
     --config_file=configs/examples/efficientnet/imagenet/efficientnet-b0-tpu.yaml \
     --params_override="train_dataset.builder=records, validation_dataset.builder=records"

Beschreibung der Befehls-Flags

mode
train, eval oder train_and_eval.
model_type
Der Typ des Modells. Zum Beispiel efficientnet usw.
dataset
Der Name des Datasets. Beispiel: imagenet.
tpu
Der Name der Cloud TPU, um das Training oder die Bewertung auszuführen.
data_dir
Gibt den Cloud Storage-Pfad für die Trainingseingabe an. In diesem Beispiel ist er auf das Dataset "fake_imagenet" festgelegt.
model_dir
Der Cloud Storage-Pfad, in dem während des Modelltrainings Prüfpunkte und Zusammenfassungen gespeichert werden. Sie können einen vorhandenen Ordner wiederverwenden, um zuvor generierte Prüfpunkte zu laden und zusätzliche Prüfpunkte zu speichern, sofern die vorherigen Prüfpunkte mit einer Cloud TPU derselben Größe und TensorFlow-Version erstellt wurden.
config_file
Der Pfad zur JSON-Datei, die das vortrainierte Modell EfficientNet enthält. Diese Datei enthält die Modellarchitektur.
params_override
Ein JSON-String, der Standardskriptparameter überschreibt. Weitere Informationen zu Skriptparametern finden Sie unter /usr/share/models/official/vision/detection/main.py.

Da das Dataset fake_imagenet für das Training und die Bewertung verwendet wurde, weichen die Ergebnisse von der tatsächlichen Ausgabe ab, die Sie bei Ausführung des Trainings und der Bewertung mit einem echten Dataset erhalten hätten.

An dieser Stelle können Sie entweder diese Anleitung beenden und Ihre GCP-Ressourcen bereinigen oder die Ausführung des Modells auf Cloud TPU Pods kennenlernen.

Modell mit Cloud TPU Pods skalieren

Sie können schneller Ergebnisse erzielen, wenn Sie Ihr Modell mit Cloud TPU Pods skalieren. Das vollständig unterstützte EfficientNet-Modell kann mit den folgenden Pod-Segmenten verwendet werden:

  • v2-32
  • v3-32

Mit Cloud TPU-Pods werden Training und Evaluierung gemeinsam durchgeführt.

Cloud TPU Pods trainieren

  1. Löschen Sie die Cloud TPU-Ressource, die Sie zum Trainieren des Modells auf einem einzelnen Gerät erstellt haben.

    (vm)$ gcloud compute tpus execution-groups delete efficientnet-tutorial \
      --zone=europe-west4-a \
      --tpu-only
  2. Führen Sie den Befehl gcloud compute tpus execution-groups mit dem Parameter accelerator-type aus, um den Pod-Slice anzugeben, den Sie verwenden möchten. Der folgende Befehl verwendet beispielsweise einen v3-32-Pod-Slice.

    (vm)$ gcloud compute tpus execution-groups  create --name=efficientnet-tutorial \
      --accelerator-type=v3-32  \
      --zone=europe-west4-a \
      --tf-version=2.4.1 \
      --tpu-only
    

    Beschreibung der Befehls-Flags

    name
    Der Name der zu erstellenden Cloud TPU.
    accelerator-type
    Der Typ der zu erstellenden Cloud TPU.
    zone
    Die Zone, in der Sie die Cloud TPU erstellen möchten.
    tf-version
    Die Version von Tensorflow, die von gcloud auf der VM installiert wird.
    tpu-only
    Erstellen Sie nur eine Cloud TPU. Standardmäßig werden mit dem Befehl gcloud eine VM und eine Cloud TPU erstellt.
    gcloud compute ssh efficientnet-tutorial --zone=europe-west4-a
    
  3. Aktualisieren Sie das Verzeichnis MODEL_DIR, um die Cloud TPU Pod-Trainingsdaten zu speichern.

    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/efficientnet-2x-pod
    
  4. Definieren Sie Ihren Cloud TPU-Namen.

    (vm)$ export TPU_NAME=efficientnet-tutorial
    
  5. Navigieren Sie zum Modellverzeichnis:

    (vm)$ cd /usr/share/models/official/vision/image_classification/
    
  6. Modell trainieren

    (vm)$ python3 classifier_trainer.py \
    --mode=train_and_eval \
    --model_type=efficientnet \
    --dataset=imagenet \
    --tpu=${TPU_NAME} \
    --data_dir=${DATA_DIR} \
    --model_dir=${MODEL_DIR} \
    --config_file=configs/examples/efficientnet/imagenet/efficientnet-b0-tpu.yaml \
    --params_override="train.epochs=1, train_dataset.builder=records, validation_dataset.builder=records"
    

    Beschreibung der Befehls-Flags

    mode
    Wenn train_and_eval festgelegt ist, wird dieses Modell trainiert und bewertet. Wenn dieses Skript auf export_only gesetzt ist, exportiert es ein gespeichertes Modell.
    model_type
    Der Typ des Modells. Zum Beispiel efficientnet usw.
    dataset
    Der Name des Datasets. Beispiel: imagenet
    tpu
    Verwendet den in der Variable TPU_NAME angegebenen Namen.
    data_dir
    Gibt den Cloud Storage-Pfad für die Trainingseingabe an. In diesem Beispiel ist er auf das Dataset "fake_imagenet" festgelegt.
    model_dir
    Der Cloud Storage-Pfad, in dem Prüfpunkte und Zusammenfassungen während des Modelltrainings gespeichert werden. Sie können einen vorhandenen Ordner wiederverwenden, um zuvor generierte Prüfpunkte zu laden und zusätzliche Prüfpunkte zu speichern, sofern die vorherigen Prüfpunkte mit einer Cloud TPU derselben Größe und TensorFlow-Version erstellt wurden.
    config_file
    Der Pfad zur JSON-Datei, die das vortrainierte Modell EfficientNet enthält. Diese Datei enthält die Modellarchitektur.
    params_override
    Ein JSON-String, der Standardskriptparameter überschreibt. Weitere Informationen zu Skriptparametern finden Sie unter /usr/share/models/official/vision/detection/main.py.

Mit dem Verfahren wird das Modell für das fake_imagenet-Dataset auf eine Epoche (insgesamt 312 Trainingsschritte und 12 Bewertungsschritte) trainiert. Dieses Training dauert bei einer v3-32 Cloud TPU etwa 2 Minuten. Wenn das Training und die Bewertung abgeschlossen sind, wird eine Meldung wie die folgende angezeigt:

Run stats:
{
  'accuracy_top_1': 0.0009969075908884406,
  'eval_loss': 7.105168342590332,
  'loss': 7.114983081817627,
  'training_accuracy_top_1': 0.0010031675919890404,
  'step_timestamp_log': [
    'BatchTimestamp<batch_index: 0,
    timestamp: 1605041621.4997303>',
    'BatchTimestamp<batch_index: 312,
    timestamp: 1605041970.8633356>'
  ],
  'train_finish_time': 1605042032.2274444,
  'avg_exp_per_second': 3111.5120716536226
}

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

  1. Trennen Sie die Verbindung zur Compute Engine-Instanz, sofern noch nicht geschehen:

    (vm)$ exit
    

    Die Eingabeaufforderung sollte nun username@projectname lauten und angeben, dass Sie sich in Cloud Shell befinden.

  2. Verwenden Sie in Cloud Shell den folgenden Befehl, um Ihre Compute Engine-VM und Cloud TPU zu löschen:

    $ gcloud compute tpus execution-groups delete efficientnet-tutorial \
      --zone=europe-west4-a
    
  3. Prüfen Sie, ob die Ressourcen gelöscht wurden. Führen Sie dazu gcloud compute tpus execution-groups list aus. Der Löschvorgang kann einige Minuten dauern. Eine Antwort wie die folgende gibt an, dass Ihre Instanzen erfolgreich gelöscht wurden:

    $ gcloud compute tpus execution-groups list \
     --zone=europe-west4-a
    

    Sie sollten eine leere Liste von TPUs wie die folgende sehen:

       NAME             STATUS
    
  4. Löschen Sie den Cloud Storage-Bucket mit gsutil, wie unten gezeigt. Ersetzen Sie bucket-name durch den Namen Ihres Cloud Storage-Buckets.

    $ gsutil rm -r gs://bucket-name
    

Nächste Schritte

In dieser Anleitung haben Sie das EfficientNet-Modell mithilfe eines Beispiel-Datasets trainiert. Die Ergebnisse dieses Trainings sind in den meisten Fällen nicht für die Inferenz verwendbar. Wenn Sie ein Modell für die Inferenz verwenden möchten, können Sie die Daten in einem öffentlich verfügbaren Dataset oder in Ihrem eigenen Dataset trainieren. Für Modelle, die auf Cloud TPUs trainiert wurden, müssen Datasets das Format TFRecord haben.

Sie können das Beispiel für das Dataset-Konvertierungstool verwenden, um ein Bildklassifizierungs-Dataset in das TFRecord-Format zu konvertieren. Wenn Sie kein Bildklassifizierungsmodell verwenden, müssen Sie das Dataset selbst in das TFRecords-Format konvertieren. Weitere Informationen finden Sie unter TFRecord und tf.Example

Hyperparameter-Abstimmung

Sie können die Hyperparameter des Modells optimieren, um die Leistung des Modells mit Ihrem Dataset zu verbessern. Informationen zu Hyperparametern, die für alle TPU-unterstützten Modelle üblich sind, finden Sie auf GitHub. Informationen zu modellspezifischen Hyperparametern finden Sie im Quellcode für die einzelnen Modelle. Weitere Informationen zur Hyperparameter-Abstimmung finden Sie unter Übersicht über Hyperparameter-Abstimmung, Hyperparameter-Abstimmungsdienst und Hyperparameter abstimmen.

Inferenz

Sobald Ihr Modell trainiert ist, können Sie es für Inferenz (auch als Vorhersage bezeichnet) verwenden. AI Platform ist eine cloudbasierte Lösung, mit der Sie Modelle für maschinelles Lernen entwickeln, trainieren und bereitstellen können. Sobald ein Modell bereitgestellt wurde, können Sie den AI Platform Prediction-Dienst verwenden.

  • In der Anleitung zur Dataset-Konvertierung erfahren Sie, wie Sie mit Ihren eigenen Daten anstelle der Datasets "fake_imagenet" oder "ImageNet" trainieren und auswerten. In dieser Anleitung wird erläutert, wie Sie mit dem Skript-Beispiel für die Konvertierung von Bildklassifizierungsdaten ein Rohdataset für die Bildklassifizierung in das von Cloud TPU Tensorflow-Modellen verwendete TFRecord-Format konvertieren.

  • Führen Sie eine Cloud TPU colab aus, die zeigt, wie Sie ein Bildklassifizierungsmodell mit Ihren eigenen Bilddaten ausführen.

  • Andere Cloud TPU-Anleitungen ansehen.

  • TPU-Monitoring-Tools in TensorBoard verwenden