这是 Recommendations AI、Retail Search 和新的 Retail 控制台的文档。

Retail API 的特性和功能

Recommendations AI 和 Retail Search 使用 Retail API。您可以使用 Retail API 上传和管理您网站的商品目录信息和用户事件日志。您可以根据这些信息获取和自定义结果,而 Retail API 会继续使用这些数据训练和更新用于改善预测和搜索结果的模型。

如需详细了解为您的网站实现 Retail 流程,请参阅实现 Retail

Recommendations AI

借助 Recommendations AI,您不必具备有关机器学习、系统设计或操作方面的高水平专业知识,也能构建高质量的个性化产品推荐系统。利用您网站的清单产品和用户行为,Retail API 会专门针对您的公司构建推荐模型。然后,您可以请求向用户显示其他清单商品。

Retail API 使用用户事件和商品清单来训练推荐机器学习模型,以根据这些数据提供推荐。

Recommendations AI 功能包括:

  • 自定义模型。每个模型都基于使用转换器的基于序列的机器学习模型,针对您的数据进行训练。

  • 个性化结果。利用个性化算法,而无需任何机器学习专业知识。建议基于用户行为和活动,如浏览、点击和店内购买以及在线活动,因此每个预测结果都是个性化的。

  • 实时预测。提供的每条建议都会考虑用户之前的活动,例如点击、视图和购买事件,因此建议是实时的。

  • 自动训模型练和微调。每日模型重新训练可确保所有模型都能准确捕捉用户每天的行为。

  • 优化目标。转化率、点击率和收入优化等目标可帮助您精确优化业务目标。

  • 全渠道建议。借助 API 模型,不仅可以提供网站推荐,还可以个性化您的整个购物之旅,包括移动应用推荐、个性化电子邮件推荐、商店信息亭或呼叫中心应用。

借助 Retail Search,您可以提供可根据您的业务需求自定义的高质量商品结果。利用 Google 的查询和上下文认知,可改善您的网站和移动应用中的商品发现。

Retail Search 功能包括:

  • 商品层次结构:您可以在可搜索的商品清单中添加集合和款式/规格。

  • 查询扩展:针对通常产生结果较少的查询字词(例如使用非常具体的关键字的查询)增加相关结果。

  • 相关性阈值:调整 Retail 如何平衡返回精确率(返回的搜索结果的相关性)和召回率(返回查询的更多结果)。

  • 分页:控制搜索结果的分页,以缩短查询时间和减小响应大小。

  • 过滤:使用表达式语法提供可优化网站搜索结果的过滤功能。

  • 排序:按优先级顺序并由多个字段设置搜索结果的顺序。

  • 分面:生成构面,以根据您提供的属性为用户提供相关度更高的选项。 需要在搜索请求中为数值特性提供分桶,以便在搜索响应中返回这些分桶。

  • 动态构面:根据搜索查询自动生成构面键,并自动与搜索请求中提供的构面键进行组合(和重新排序)。此功能目前基于许可名单。如需启用此功能,请与 Retail Search 支持团队联系。

  • 提升和掩埋:通过确定某些类型的结果的优先级或降低其优先级来控制搜索结果排名。

  • 浏览:根据搜索请求中提供的类别获取搜索结果。请注意,此模式下查询字段为空。可以与过滤、排序、分面、动态分面、提升和掩埋结合使用。此功能目前基于许可名单。请与 Retail Search 支持团队联系,获取启用此功能方面的帮助。

使用 Retail API

如需构建用于推荐或搜索的机器学习模型,Retail 需要两组信息:

  • 商品清单:有关推荐给客户的商品的信息。其中包括商品名、说明、有货库存状况和价格。

  • 用户事件:您的网站上的最终用户行为。这包括用户查看或购买特定商品,或者您的网站向用户显示商品列表等事件。

借助许多集成选项,您可以使用 BigQuery、Cloud Storage、Merchant Center、跟踪代码管理器和 Google Analytics(分析)等您可能已在使用的数据来提取数据。