Dataproc으로 Trino 사용


Trino(이전의 Prestro)는 하나 이상의 이기종 데이터 소스에 분산된 큰 데이터 세트를 쿼리하도록 설계된 분산형 SQL 쿼리 엔진입니다. Trino는 커넥터를 통해 Hive, MySQL, Kafka 및 기타 데이터 소스를 쿼리할 수 있습니다. 이 튜토리얼에서는 다음을 수행하는 방법을 보여줍니다.

  • Dataproc 클러스터에 Trino 서비스 설치
  • 클러스터에 있는 Trino 서비스와 통신하는 로컬 머신에 설치된 Trino 클라이언트에서 공개 데이터 쿼리
  • Trino 자바 JDBC 드라이버를 통해 클러스터에 있는 Trino 서비스와 통신하는 자바 애플리케이션에서 쿼리 실행

목표

  • Trino가 설치된 Dataproc 클러스터를 만듭니다.
  • 데이터를 준비합니다. 이 가이드에서는 BigQuery에서 제공되는 Chicago Taxi Trips 공개 데이터세트를 사용합니다.
    1. BigQuery에서 데이터를 추출합니다.
    2. 데이터를 Cloud Storage에 CSV 파일로 로드합니다.
    3. 데이터를 변환합니다.
      1. 데이터를 Hive 외부 테이블로 노출하여 Trino가 데이터를 쿼리할 수 있도록 합니다.
      2. 데이터를 CSV 형식에서 Parquet 형식으로 변환하여 더 빠르게 쿼리할 수 있도록 합니다.
  • Trino CLI 또는 애플리케이션 코드 쿼리를 각각 SSH 터널 또는 Trino JDBC 드라이버를 사용하여 클러스터에서 실행 중인 Trino 조정자에게 보냅니다.
  • 로그를 확인하고 Trino 웹 UI를 통해 Trino 서비스를 모니터링합니다.
  • 비용

    이 문서에서는 비용이 청구될 수 있는 다음과 같은 Google Cloud 구성요소를 사용합니다.

    프로젝트 사용량을 기준으로 예상 비용을 산출하려면 가격 계산기를 사용하세요. Google Cloud를 처음 사용하는 사용자는 무료 체험판을 사용할 수 있습니다.

    시작하기 전에

    Google Cloud 프로젝트 그리고 이 가이드에서 사용되는 데이터를 보관하기 위한 Cloud Storage 버킷을 아직 만들지 않았다면 만듭니다. 1. 프로젝트 설정
    1. Google Cloud 계정에 로그인합니다. Google Cloud를 처음 사용하는 경우 계정을 만들고 Google 제품의 실제 성능을 평가해 보세요. 신규 고객에게는 워크로드를 실행, 테스트, 배포하는 데 사용할 수 있는 $300의 무료 크레딧이 제공됩니다.
    2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

      Go to project selector

    3. Google Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다.

    4. Enable the Dataproc, Compute Engine, Cloud Storage, and BigQuery APIs.

      Enable the APIs

    5. Install the Google Cloud CLI.
    6. To initialize the gcloud CLI, run the following command:

      gcloud init
    7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

      Go to project selector

    8. Google Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다.

    9. Enable the Dataproc, Compute Engine, Cloud Storage, and BigQuery APIs.

      Enable the APIs

    10. Install the Google Cloud CLI.
    11. To initialize the gcloud CLI, run the following command:

      gcloud init
    1. 이 가이드에서 사용되는 데이터를 보관하기 위한 프로젝트 내 Cloud Storage 버킷 만들기
    1. Google Cloud Console에서 Cloud Storage 버킷 페이지로 이동합니다.

      버킷 페이지로 이동

    2. 버킷 만들기를 클릭합니다.
    3. 버킷 만들기 페이지에서 버킷 정보를 입력합니다. 다음 단계로 이동하려면 계속을 클릭합니다.
      • 버킷 이름 지정에서 버킷 이름 지정 요구사항을 충족하는 이름을 입력합니다.
      • 데이터를 저장할 위치 선택에서 다음을 수행합니다.
        • 위치 유형 옵션을 선택합니다.
        • 위치 옵션을 선택합니다.
      • 데이터의 기본 스토리지 클래스 선택에서 스토리지 클래스를 선택합니다.
      • 객체 액세스를 제어하는 방식 선택에서 액세스 제어 옵션을 선택합니다.
      • 고급 설정(선택사항)에서 암호화 방법, 보관 정책 또는 버킷 라벨을 지정합니다.
    4. 만들기를 클릭합니다.

    Dataproc 클러스터 만들기

    optional-components 플래그(이미지 버전 2.1 이상에서 사용 가능)를 사용하여 Dataproc 클러스터를 만들고 Trino 선택적 구성요소를 클러스터에 설치하고 enable-component-gateway 플래그를 사용하여 구성요소 게이트웨이를 사용 설정하여 Google Cloud console에서 Trino 웹 UI에 액세스할 수 있도록 합니다.

    1. 환경 변수 설정
      • PROJECT: 프로젝트 ID
      • BUCKET_NAME: 시작하기 전에에서 만든 Cloud Storage 버킷의 이름
      • REGION: 이 가이드에서 사용된 클러스터가 만들어질 리전(예: 'us-west1')
      • WORKERS: 이 가이드에는 3~5개의 작업자가 권장됨
      export PROJECT=project-id
      export WORKERS=number
      export REGION=region
      export BUCKET_NAME=bucket-name
      
    2. 로컬 머신에서 Google Cloud CLI를 실행하여 클러스터를 만듭니다.
      gcloud beta dataproc clusters create trino-cluster \
          --project=${PROJECT} \
          --region=${REGION} \
          --num-workers=${WORKERS} \
          --scopes=cloud-platform \
          --optional-components=TRINO \
          --image-version=2.1  \
          --enable-component-gateway
      

    데이터 준비

    bigquery-public-data chicago_taxi_trips 데이터세트를 Cloud Storage에 CSV 파일로 내보낸 후에 데이터를 참조할 Hive 외부 테이블을 만듭니다.

    1. 로컬 머신에서 다음 명령어를 실행하여 BigQuery의 택시 데이터를 헤더가 없는 CSV 파일로 시작하기 전에에서 만든 Cloud Storage 버킷에 가져옵니다.
      bq --location=us extract --destination_format=CSV \
           --field_delimiter=',' --print_header=false \
             "bigquery-public-data:chicago_taxi_trips.taxi_trips" \
             gs://${BUCKET_NAME}/chicago_taxi_trips/csv/shard-*.csv
      
    2. Cloud Storage 버킷에서 CSV 및 Parquet 파일의 지원을 받는 Hive 외부 테이블을 만듭니다.
      1. Hive 외부 테이블 chicago_taxi_trips_csv를 만듭니다.
        gcloud dataproc jobs submit hive \
            --cluster trino-cluster \
            --region=${REGION} \
            --execute "
                CREATE EXTERNAL TABLE chicago_taxi_trips_csv(
                  unique_key   STRING,
                  taxi_id  STRING,
                  trip_start_timestamp  TIMESTAMP,
                  trip_end_timestamp  TIMESTAMP,
                  trip_seconds  INT,
                  trip_miles   FLOAT,
                  pickup_census_tract  INT,
                  dropoff_census_tract  INT,
                  pickup_community_area  INT,
                  dropoff_community_area  INT,
                  fare  FLOAT,
                  tips  FLOAT,
                  tolls  FLOAT,
                  extras  FLOAT,
                  trip_total  FLOAT,
                  payment_type  STRING,
                  company  STRING,
                  pickup_latitude  FLOAT,
                  pickup_longitude  FLOAT,
                  pickup_location  STRING,
                  dropoff_latitude  FLOAT,
                  dropoff_longitude  FLOAT,
                  dropoff_location  STRING)
                ROW FORMAT DELIMITED
                FIELDS TERMINATED BY ','
                STORED AS TEXTFILE
                location 'gs://${BUCKET_NAME}/chicago_taxi_trips/csv/';"
        
      2. Hive 외부 테이블이 생성되었는지 확인합니다.
        gcloud dataproc jobs submit hive \
            --cluster trino-cluster \
            --region=${REGION} \
            --execute "SELECT COUNT(*) FROM chicago_taxi_trips_csv;"
        
      3. 같은 열이 있는 다른 Hive 외부 테이블 chicago_taxi_trips_parquet을 만듭니다. 하지만 이번에는 더 나은 쿼리 성능을 위해 데이터를 Parquet 형식으로 저장합니다.
        gcloud dataproc jobs submit hive \
            --cluster trino-cluster \
            --region=${REGION} \
            --execute "
                CREATE EXTERNAL TABLE chicago_taxi_trips_parquet(
                  unique_key   STRING,
                  taxi_id  STRING,
                  trip_start_timestamp  TIMESTAMP,
                  trip_end_timestamp  TIMESTAMP,
                  trip_seconds  INT,
                  trip_miles   FLOAT,
                  pickup_census_tract  INT,
                  dropoff_census_tract  INT,
                  pickup_community_area  INT,
                  dropoff_community_area  INT,
                  fare  FLOAT,
                  tips  FLOAT,
                  tolls  FLOAT,
                  extras  FLOAT,
                  trip_total  FLOAT,
                  payment_type  STRING,
                  company  STRING,
                  pickup_latitude  FLOAT,
                  pickup_longitude  FLOAT,
                  pickup_location  STRING,
                  dropoff_latitude  FLOAT,
                  dropoff_longitude  FLOAT,
                  dropoff_location  STRING)
                STORED AS PARQUET
                location 'gs://${BUCKET_NAME}/chicago_taxi_trips/parquet/';"
        
      4. 데이터를 Hive CSV 테이블에서 Hive Parquet 테이블로 로드합니다.
        gcloud dataproc jobs submit hive \
            --cluster trino-cluster \
            --region=${REGION} \
            --execute "
                INSERT OVERWRITE TABLE chicago_taxi_trips_parquet
                SELECT * FROM chicago_taxi_trips_csv;"
        
      5. 데이터가 올바르게 로드되었는지 확인합니다.
        gcloud dataproc jobs submit hive \
            --cluster trino-cluster \
            --region=${REGION} \
            --execute "SELECT COUNT(*) FROM chicago_taxi_trips_parquet;"
        

    쿼리 실행

    Trino CLI 또는 애플리케이션에서 로컬로 쿼리를 실행할 수 있습니다.

    Trino CLI 쿼리

    이 섹션에서는 Trino CLI를 사용하여 Hive Parquet 택시 데이터세트를 쿼리하는 방법을 보여줍니다.

    1. 로컬 머신에서 다음 명령어를 실행하여 클러스터의 마스터 노드로 SSH를 전송합니다. 명령어를 실행하는 동안 로컬 터미널이 응답을 중지합니다.
      gcloud compute ssh trino-cluster-m
      
    2. 클러스터의 마스터 노드에 있는 SSH 터미널 창에서 마스터 노드에서 실행되는 Trino 서버에 연결되는 Trino CLI를 실행합니다.
      trino --catalog hive --schema default
      
    3. trino:default 프롬프트에서 Trino가 Hive 테이블을 찾을 수 있는지 확인합니다.
      show tables;
      
      Table
      ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
       chicago_taxi_trips_csv
       chicago_taxi_trips_parquet
      (2 rows)
      
    4. trino:default 프롬프트에서 쿼리를 실행하고, Parquet 데이터와 CSV 데이터의 쿼리 성능을 비교합니다.
      • Parquet 데이터 쿼리
        select count(*) from chicago_taxi_trips_parquet where trip_miles > 50;
        
         _col0
        ‐‐‐‐‐‐‐‐
         117957
        (1 row)
        Query 20180928_171735_00006_2sz8c, FINISHED, 3 nodes Splits: 308 total, 308 done (100.00%) 0:16 [113M rows, 297MB] [6.91M rows/s, 18.2MB/s]
      • CSV 데이터 쿼리
        select count(*) from chicago_taxi_trips_csv where trip_miles > 50;
        
        _col0
        ‐‐‐‐‐‐‐‐
         117957
        (1 row)
        Query 20180928_171936_00009_2sz8c, FINISHED, 3 nodes Splits: 881 total, 881 done (100.00%) 0:47 [113M rows, 41.5GB] [2.42M rows/s, 911MB/s]

    자바 애플리케이션 쿼리

    Trino 자바 JDBC 드라이버를 통해 자바 애플리케이션에서 쿼리를 실행하려면 다음 단계를 따르세요. 1. Trino Java JDBC 드라이버를 다운로드합니다. 1. Maven pom.xml에서 trino-jdbc 종속 항목을 추가합니다.

    <dependency>
      <groupId>io.trino</groupId>
      <artifactId>trino-jdbc</artifactId>
      <version>376</version>
    </dependency>
    
    샘플 Java 코드
    package dataproc.codelab.trino;
    import java.sql.Connection;
    import java.sql.DriverManager;
    import java.sql.ResultSet;
    import java.sql.SQLException;
    import java.sql.Statement;
    import java.util.Properties;
    public class TrinoQuery {
      private static final String URL = "jdbc:trino://trino-cluster-m:8080/hive/default";
      private static final String SOCKS_PROXY = "localhost:1080";
      private static final String USER = "user";
      private static final String QUERY =
          "select count(*) as count from chicago_taxi_trips_parquet where trip_miles > 50";
      public static void main(String[] args) {
        try {
          Properties properties = new Properties();
          properties.setProperty("user", USER);
          properties.setProperty("socksProxy", SOCKS_PROXY);
          Connection connection = DriverManager.getConnection(URL, properties);
          try (Statement stmt = connection.createStatement()) {
            ResultSet rs = stmt.executeQuery(QUERY);
            while (rs.next()) {
              int count = rs.getInt("count");
              System.out.println("The number of long trips: " + count);
            }
          }
        } catch (SQLException e) {
          e.printStackTrace();
        }
      }
    }
    

    로깅 및 모니터링

    로깅

    Trino 로그는 클러스터의 마스터 및 워커 노드의 /var/log/trino/에 있습니다.

    웹 UI

    로컬 브라우저의 클러스터 마스터 노드에서 실행되는 Trino 웹 UI를 열려면 구성요소 게이트웨이 URL 보기 및 액세스를 참조하세요.

    모니터링

    Trino는 런타임 테이블을 통해 클러스터 런타임 정보를 노출합니다. Trino 세션(trino:default에 있음) 프롬프트에서 다음 쿼리를 실행하여 런타임 테이블 데이터를 봅니다.

    select * FROM system.runtime.nodes;
    

    삭제

    튜토리얼을 완료한 후에는 만든 리소스를 삭제하여 할당량 사용을 중지하고 요금이 청구되지 않도록 할 수 있습니다. 다음 섹션은 이러한 리소스를 삭제하거나 사용 중지하는 방법을 설명합니다.

    프로젝트 삭제

    비용이 청구되지 않도록 하는 가장 쉬운 방법은 튜토리얼에서 만든 프로젝트를 삭제하는 것입니다.

    프로젝트를 삭제하는 방법은 다음과 같습니다.

    1. In the Google Cloud console, go to the Manage resources page.

      Go to Manage resources

    2. In the project list, select the project that you want to delete, and then click Delete.
    3. In the dialog, type the project ID, and then click Shut down to delete the project.

    클러스터 삭제

    • 클러스터를 삭제하는 방법은 다음과 같습니다.
      gcloud dataproc clusters delete --project=${PROJECT} trino-cluster \
          --region=${REGION}
      

    버킷 삭제

    • 시작하기 전에에서 만든 Cloud Storage 버킷과 그 안에 저장된 데이터 파일을 삭제하는 방법은 다음과 같습니다.
      gcloud storage rm gs://${BUCKET_NAME} --recursive