Menggunakan konektor Cloud Storage dengan Apache Spark


Tutorial ini menunjukkan cara menjalankan contoh kode yang menggunakan konektor Cloud Storage dengan Apache Spark.

Tujuan

Tulis tugas Spark jumlah kata sederhana dalam Java, Scala, atau Python, lalu jalankan tugas di cluster Dataproc.

Biaya

Dalam dokumen ini, Anda menggunakan komponen Google Cloud yang dapat ditagih berikut:

  • Compute Engine
  • Dataproc
  • Cloud Storage

Untuk membuat perkiraan biaya berdasarkan proyeksi penggunaan Anda, gunakan kalkulator harga. Pengguna baru Google Cloud mungkin memenuhi syarat untuk mendapatkan uji coba gratis.

Sebelum memulai

Jalankan langkah-langkah di bawah untuk bersiap menjalankan kode dalam tutorial ini.

  1. Siapkan project Anda. Jika perlu, siapkan project dengan Dataproc, Compute Engine, dan Cloud Storage API yang diaktifkan serta Google Cloud CLI yang diinstal di komputer lokal Anda.

    1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
    2. Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.

      Buka pemilih project

    3. Make sure that billing is enabled for your Google Cloud project.

    4. Aktifkan API Dataproc, Compute Engine, and Cloud Storage.

      Mengaktifkan API

    5. Buat akun layanan:

      1. Di konsol Google Cloud, buka halaman Buat akun layanan.

        Buka Create service account
      2. Pilih project Anda.
      3. Di kolom Nama akun layanan, masukkan nama. Konsol Google Cloud akan mengisi kolom ID akun layanan berdasarkan nama ini.

        Di kolom Deskripsi akun layanan, masukkan sebuah deskripsi. Sebagai contoh, Service account for quickstart.

      4. Klik Buat dan lanjutkan.
      5. Berikan peran Project > Owner ke akun layanan.

        Untuk memberikan peran, temukan daftar Pilih peran, lalu pilih Project > Owner.

      6. Klik Lanjutkan.
      7. Klik Selesai untuk menyelesaikan pembuatan akun layanan.

        Jangan tutup jendela browser Anda. Anda akan menggunakannya pada langkah berikutnya.

    6. Membuat kunci akun layanan:

      1. Di konsol Google Cloud, klik alamat email untuk akun layanan yang telah dibuat.
      2. Klik Kunci.
      3. Klik Tambahkan kunci, lalu klik Buat kunci baru.
      4. Klik Create. File kunci JSON akan didownload ke komputer Anda.
      5. Klik Close.
    7. Tetapkan variabel lingkungan GOOGLE_APPLICATION_CREDENTIALS ke jalur file JSON yang berisi kredensial Anda. Variabel ini hanya berlaku untuk sesi shell Anda saat ini. Jadi, jika Anda membuka sesi baru, tetapkan variabel kembali.

    8. Install the Google Cloud CLI.
    9. To initialize the gcloud CLI, run the following command:

      gcloud init
    10. Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.

      Buka pemilih project

    11. Make sure that billing is enabled for your Google Cloud project.

    12. Aktifkan API Dataproc, Compute Engine, and Cloud Storage.

      Mengaktifkan API

    13. Buat akun layanan:

      1. Di konsol Google Cloud, buka halaman Buat akun layanan.

        Buka Create service account
      2. Pilih project Anda.
      3. Di kolom Nama akun layanan, masukkan nama. Konsol Google Cloud akan mengisi kolom ID akun layanan berdasarkan nama ini.

        Di kolom Deskripsi akun layanan, masukkan sebuah deskripsi. Sebagai contoh, Service account for quickstart.

      4. Klik Buat dan lanjutkan.
      5. Berikan peran Project > Owner ke akun layanan.

        Untuk memberikan peran, temukan daftar Pilih peran, lalu pilih Project > Owner.

      6. Klik Lanjutkan.
      7. Klik Selesai untuk menyelesaikan pembuatan akun layanan.

        Jangan tutup jendela browser Anda. Anda akan menggunakannya pada langkah berikutnya.

    14. Membuat kunci akun layanan:

      1. Di konsol Google Cloud, klik alamat email untuk akun layanan yang telah dibuat.
      2. Klik Kunci.
      3. Klik Tambahkan kunci, lalu klik Buat kunci baru.
      4. Klik Create. File kunci JSON akan didownload ke komputer Anda.
      5. Klik Close.
    15. Tetapkan variabel lingkungan GOOGLE_APPLICATION_CREDENTIALS ke jalur file JSON yang berisi kredensial Anda. Variabel ini hanya berlaku untuk sesi shell Anda saat ini. Jadi, jika Anda membuka sesi baru, tetapkan variabel kembali.

    16. Install the Google Cloud CLI.
    17. To initialize the gcloud CLI, run the following command:

      gcloud init

  2. Membuat bucket Cloud Storage. Anda memerlukan Cloud Storage untuk menyimpan data tutorial. Jika Anda tidak memiliki bucket yang siap digunakan, buat bucket baru di project Anda.

    1. Di Konsol Google Cloud, buka halaman Bucket Cloud Storage.

      Buka halaman Bucket

    2. Klik Buat bucket.
    3. Di halaman Buat bucket, masukkan informasi bucket Anda. Untuk melanjutkan ke langkah berikutnya, klik Lanjutkan.
      • Untuk Beri nama bucket, masukkan nama yang memenuhi persyaratan penamaan bucket.
      • Untuk Pilih tempat untuk menyimpan data, lakukan tindakan berikut:
        • Pilih opsi Jenis lokasi.
        • Pilih opsi Lokasi.
      • Untuk Memilih kelas penyimpanan default untuk data Anda, pilih kelas penyimpanan.
      • Untuk Memilih cara mengontrol akses ke objek, pilih opsi Kontrol akses.
      • Untuk Setelan lanjutan (opsional), tentukan metode enkripsi, kebijakan retensi, atau label bucket.
    4. Klik Buat.

  3. Tetapkan variabel lingkungan lokal. Tetapkan variabel lingkungan di mesin lokal Anda. Tetapkan project-id Google Cloud dan nama bucket Cloud Storage yang akan Anda gunakan untuk tutorial ini. Berikan juga nama dan region cluster Dataproc yang ada atau baru. Anda dapat membuat cluster untuk digunakan dalam tutorial ini di langkah berikutnya.

    PROJECT=project-id
    
    BUCKET_NAME=bucket-name
    
    CLUSTER=cluster-name
    
    REGION=cluster-region Example: "us-central1"
    

  4. Buat cluster Dataproc. Jalankan perintah di bawah untuk membuat cluster Dataproc single-node di zona Compute Engine yang ditentukan.

    gcloud dataproc clusters create ${CLUSTER} \
        --project=${PROJECT} \
        --region=${REGION} \
        --single-node
    

  5. Salin data publik ke bucket Cloud Storage Anda. Salin cuplikan teks Shakespeare data publik ke folder input di bucket Cloud Storage Anda:

    gcloud storage cp gs://pub/shakespeare/rose.txt \
        gs://${BUCKET_NAME}/input/rose.txt
    

  6. Siapkan lingkungan pengembangan Java (Apache Maven), Scala (SBT), atau Python.

Menyiapkan tugas jumlah kata Spark

Pilih tab di bawah untuk mengikuti langkah-langkah dalam menyiapkan paket atau file tugas untuk dikirim ke cluster Anda. Anda dapat menyiapkan salah satu jenis tugas berikut;

Java

  1. Salin file pom.xml ke komputer lokal Anda. File pom.xml berikut menentukan dependensi library Scala dan Spark, yang diberi cakupan provided untuk menunjukkan bahwa cluster Dataproc akan menyediakan library ini saat runtime. File pom.xml tidak menentukan dependensi Cloud Storage karena konektor menerapkan antarmuka HDFS standar. Saat tugas Spark mengakses file cluster Cloud Storage (file dengan URI yang diawali dengan gs://), sistem akan otomatis menggunakan konektor Cloud Storage untuk mengakses file di Cloud Storage
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
      <modelVersion>4.0.0</modelVersion>
    
      <groupId>dataproc.codelab</groupId>
      <artifactId>word-count</artifactId>
      <version>1.0</version>
    
      <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
      </properties>
    
      <dependencies>
        <dependency>
          <groupId>org.scala-lang</groupId>
          <artifactId>scala-library</artifactId>
          <version>Scala version, for example, 2.11.8</version>
          <scope>provided</scope>
        </dependency>
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-core_Scala major.minor.version, for example, 2.11</artifactId>
          <version>Spark version, for example, 2.3.1</version>
          <scope>provided</scope>
        </dependency>
      </dependencies>
    </project>
  2. Salin kode WordCount.java yang tercantum di bawah ini ke komputer lokal Anda.
    1. Buat kumpulan direktori dengan jalur src/main/java/dataproc/codelab:
      mkdir -p src/main/java/dataproc/codelab
      
    2. Salin WordCount.java ke komputer lokal Anda ke dalam src/main/java/dataproc/codelab:
      cp WordCount.java src/main/java/dataproc/codelab
      

    WordCount.java adalah tugas Spark sederhana di Java yang membaca file teks dari Cloud Storage, melakukan penghitungan kata, lalu menulis hasil file teks ke Cloud Storage.

    package dataproc.codelab;
    
    import java.util.Arrays;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import scala.Tuple2;
    
    public class WordCount {
      public static void main(String[] args) {
        if (args.length != 2) {
          throw new IllegalArgumentException("Exactly 2 arguments are required: <inputUri> <outputUri>");
        }
        String inputPath = args[0];
        String outputPath = args[1];
        JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("Word Count"));
        JavaRDD<String> lines = sparkContext.textFile(inputPath);
        JavaRDD<String> words = lines.flatMap(
            (String line) -> Arrays.asList(line.split(" ")).iterator()
        );
        JavaPairRDD<String, Integer> wordCounts = words.mapToPair(
            (String word) -> new Tuple2<>(word, 1)
        ).reduceByKey(
            (Integer count1, Integer count2) -> count1 + count2
        );
        wordCounts.saveAsTextFile(outputPath);
      }
    }
  3. Build paket.
    mvn clean package
    
    Jika build berhasil, target/word-count-1.0.jar akan dibuat.
  4. Menyimpan data paket ke Cloud Storage.
    gcloud storage cp target/word-count-1.0.jar \
        gs://${BUCKET_NAME}/java/word-count-1.0.jar
    

Scala

  1. Salin file build.sbt ke komputer lokal Anda. File build.sbt berikut menentukan dependensi library Scala dan Spark, yang diberi cakupan provided untuk menunjukkan bahwa cluster Dataproc akan menyediakan library ini saat runtime. File build.sbt tidak menentukan dependensi Cloud Storage karena konektor menerapkan antarmuka HDFS standar. Saat tugas Spark mengakses file cluster Cloud Storage (file dengan URI yang diawali dengan gs://), sistem akan otomatis menggunakan konektor Cloud Storage untuk mengakses file di Cloud Storage
    scalaVersion := "Scala version, for example, 2.11.8"
    
    name := "word-count"
    organization := "dataproc.codelab"
    version := "1.0"
    
    libraryDependencies ++= Seq(
      "org.scala-lang" % "scala-library" % scalaVersion.value % "provided",
      "org.apache.spark" %% "spark-core" % "Spark version, for example, 2.3.1" % "provided"
    )
  2. Salin word-count.scala ke komputer lokal Anda. Ini adalah tugas Spark sederhana di Java yang membaca file teks dari Cloud Storage, melakukan penghitungan kata, lalu menulis hasil file teks ke Cloud Storage.
    package dataproc.codelab
    
    import org.apache.spark.SparkContext
    import org.apache.spark.SparkConf
    
    object WordCount {
      def main(args: Array[String]) {
        if (args.length != 2) {
          throw new IllegalArgumentException(
              "Exactly 2 arguments are required: <inputPath> <outputPath>")
        }
    
        val inputPath = args(0)
        val outputPath = args(1)
    
        val sc = new SparkContext(new SparkConf().setAppName("Word Count"))
        val lines = sc.textFile(inputPath)
        val words = lines.flatMap(line => line.split(" "))
        val wordCounts = words.map(word => (word, 1)).reduceByKey(_ + _)
        wordCounts.saveAsTextFile(outputPath)
      }
    }
  3. Build paket.
    sbt clean package
    
    Jika build berhasil, target/scala-2.11/word-count_2.11-1.0.jar akan dibuat.
  4. Menyimpan data paket ke Cloud Storage.
    gcloud storage cp target/scala-2.11/word-count_2.11-1.0.jar \
        gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar
    

Python

  1. Salin word-count.py ke komputer lokal Anda. Ini adalah tugas Spark sederhana di Python menggunakan PySpark yang membaca file teks dari Cloud Storage, melakukan penghitungan kata, lalu menulis hasil file teks ke Cloud Storage.
    #!/usr/bin/env python
    
    import pyspark
    import sys
    
    if len(sys.argv) != 3:
      raise Exception("Exactly 2 arguments are required: <inputUri> <outputUri>")
    
    inputUri=sys.argv[1]
    outputUri=sys.argv[2]
    
    sc = pyspark.SparkContext()
    lines = sc.textFile(sys.argv[1])
    words = lines.flatMap(lambda line: line.split())
    wordCounts = words.map(lambda word: (word, 1)).reduceByKey(lambda count1, count2: count1 + count2)
    wordCounts.saveAsTextFile(sys.argv[2])

Mengirim tugas

Jalankan perintah gcloud berikut untuk mengirimkan tugas jumlah kata ke cluster Dataproc Anda.

Java

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/java/word-count-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Scala

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Python

gcloud dataproc jobs submit pyspark word-count.py \
    --cluster=${CLUSTER} \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Melihat output

Setelah tugas selesai, jalankan perintah CLI gcloud berikut untuk melihat output jumlah kata.

gcloud storage cat gs://${BUCKET_NAME}/output/*

Output wordcount akan mirip dengan berikut ini:

(a,2)
(call,1)
(What's,1)
(sweet.,1)
(we,1)
(as,1)
(name?,1)
(any,1)
(other,1)
(rose,1)
(smell,1)
(name,1)
(would,1)
(in,1)
(which,1)
(That,1)
(By,1)

Pembersihan

Setelah menyelesaikan tutorial, Anda dapat membersihkan resource yang dibuat agar resource tersebut berhenti menggunakan kuota dan dikenai biaya. Bagian berikut menjelaskan cara menghapus atau menonaktifkan resource ini.

Menghapus project

Cara termudah untuk menghilangkan penagihan adalah dengan menghapus project yang Anda buat untuk tutorial.

Untuk menghapus project:

  1. Di konsol Google Cloud, buka halaman Manage resource.

    Buka Manage resource

  2. Pada daftar project, pilih project yang ingin Anda hapus, lalu klik Delete.
  3. Pada dialog, ketik project ID, lalu klik Shut down untuk menghapus project.

Menghapus cluster Dataproc

Daripada menghapus project, Anda mungkin hanya ingin menghapus cluster dalam project.

Menghapus bucket Cloud Storage

Konsol Google Cloud

  1. Di konsol Google Cloud, buka halaman Buckets Cloud Storage.

    Buka Buckets

  2. Klik kotak centang untuk bucket yang ingin Anda dihapus.
  3. Untuk menghapus bucket, klik Hapus, lalu ikuti petunjuk.

Command line

    Hapus bucket:
    gcloud storage buckets delete BUCKET_NAME

Langkah selanjutnya