Usar o conector do Cloud Storage com o Apache Spark


Este tutorial mostra como executar um código de exemplo que usa o conector do Cloud Storage com o Apache Spark.

Objetivos

Escreva um job simples de contagem de palavras do Spark em Java, Scala ou Python e execute-o em um cluster do Dataproc.

Custos

Neste documento, você usará os seguintes componentes faturáveis do Google Cloud:

  • Compute Engine
  • Dataproc
  • Cloud Storage

Para gerar uma estimativa de custo baseada na projeção de uso deste tutorial, use a calculadora de preços. Novos usuários do Google Cloud podem estar qualificados para uma avaliação gratuita.

Antes de começar

Execute as etapas abaixo para se preparar para executar o código neste tutorial.

  1. Criar o projeto. Se necessário, configure um projeto com as APIs Dataproc, Compute Engine e Cloud Storage ativadas e o Google Cloud CLI instalado na máquina local.

    1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
    2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

      Go to project selector

    3. Make sure that billing is enabled for your Google Cloud project.

    4. Enable the Dataproc, Compute Engine, and Cloud Storage APIs.

      Enable the APIs

    5. Create a service account:

      1. In the Google Cloud console, go to the Create service account page.

        Go to Create service account
      2. Select your project.
      3. In the Service account name field, enter a name. The Google Cloud console fills in the Service account ID field based on this name.

        In the Service account description field, enter a description. For example, Service account for quickstart.

      4. Click Create and continue.
      5. Grant the Project > Owner role to the service account.

        To grant the role, find the Select a role list, then select Project > Owner.

      6. Click Continue.
      7. Click Done to finish creating the service account.

        Do not close your browser window. You will use it in the next step.

    6. Create a service account key:

      1. In the Google Cloud console, click the email address for the service account that you created.
      2. Click Keys.
      3. Click Add key, and then click Create new key.
      4. Click Create. A JSON key file is downloaded to your computer.
      5. Click Close.
    7. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the path of the JSON file that contains your credentials. This variable applies only to your current shell session, so if you open a new session, set the variable again.

    8. Install the Google Cloud CLI.
    9. To initialize the gcloud CLI, run the following command:

      gcloud init
    10. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

      Go to project selector

    11. Make sure that billing is enabled for your Google Cloud project.

    12. Enable the Dataproc, Compute Engine, and Cloud Storage APIs.

      Enable the APIs

    13. Create a service account:

      1. In the Google Cloud console, go to the Create service account page.

        Go to Create service account
      2. Select your project.
      3. In the Service account name field, enter a name. The Google Cloud console fills in the Service account ID field based on this name.

        In the Service account description field, enter a description. For example, Service account for quickstart.

      4. Click Create and continue.
      5. Grant the Project > Owner role to the service account.

        To grant the role, find the Select a role list, then select Project > Owner.

      6. Click Continue.
      7. Click Done to finish creating the service account.

        Do not close your browser window. You will use it in the next step.

    14. Create a service account key:

      1. In the Google Cloud console, click the email address for the service account that you created.
      2. Click Keys.
      3. Click Add key, and then click Create new key.
      4. Click Create. A JSON key file is downloaded to your computer.
      5. Click Close.
    15. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the path of the JSON file that contains your credentials. This variable applies only to your current shell session, so if you open a new session, set the variable again.

    16. Install the Google Cloud CLI.
    17. To initialize the gcloud CLI, run the following command:

      gcloud init

  2. Criar um bucket do Cloud Storage Você precisa do Cloud Storage para armazenar os dados do tutorial. Se você não tiver um pronto para usá-lo, crie um novo bucket no projeto.

    1. In the Google Cloud console, go to the Cloud Storage Buckets page.

      Go to Buckets page

    2. Click Create bucket.
    3. On the Create a bucket page, enter your bucket information. To go to the next step, click Continue.
      • For Name your bucket, enter a name that meets the bucket naming requirements.
      • For Choose where to store your data, do the following:
        • Select a Location type option.
        • Select a Location option.
      • For Choose a default storage class for your data, select a storage class.
      • For Choose how to control access to objects, select an Access control option.
      • For Advanced settings (optional), specify an encryption method, a retention policy, or bucket labels.
    4. Click Create.

  3. Defina variáveis de ambiente locais. Defina variáveis de ambiente na máquina local. Defina o ID do projeto do Google Cloud e o nome do bucket do Cloud Storage que você usará neste tutorial. Forneça também o nome e a região de um cluster novo ou existente do Dataproc. Você pode criar um cluster para usar neste tutorial na próxima etapa.

    PROJECT=project-id
    
    BUCKET_NAME=bucket-name
    
    CLUSTER=cluster-name
    
    REGION=cluster-region Example: "us-central1"
    

  4. Criar um cluster de Dataproc. Execute o comando abaixo para criar um cluster do Dataproc de nó único na zona do Compute Engine especificada.

    gcloud dataproc clusters create ${CLUSTER} \
        --project=${PROJECT} \
        --region=${REGION} \
        --single-node
    

  5. Copie dados públicos para o bucket do Cloud Storage. Copiar dados públicos trecho de texto de Shakespeare na pasta input do seu Bucket do Cloud Storage:

    gcloud storage cp gs://pub/shakespeare/rose.txt \
        gs://${BUCKET_NAME}/input/rose.txt
    

  6. Configure um ambiente de desenvolvimento Java (Apache Maven), Scala (SBT) ou Python.

Preparar o job de contagem de palavras do Spark

Selecione uma guia abaixo para seguir as etapas e preparar um pacote ou arquivo de job para enviar ao cluster. Você pode preparar um dos seguintes tipos de job:

Java

  1. Copie o arquivo pom.xml para sua máquina local. O arquivo pom.xml a seguir especifica as dependências da biblioteca Scala e Spark, que recebem um escopo provided para indicar que o cluster do Dataproc fornecerá essas bibliotecas no ambiente de execução. O arquivo pom.xml não especifica uma dependência do Cloud Storage porque o conector implementa a interface HDFS padrão. Quando um job do Spark acessa arquivos de cluster do Cloud Storage (arquivos com URIs que começam com gs:// ), o sistema usa automaticamente o conector do Cloud Storage para acessar os arquivos no Cloud Storage
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
      <modelVersion>4.0.0</modelVersion>
    
      <groupId>dataproc.codelab</groupId>
      <artifactId>word-count</artifactId>
      <version>1.0</version>
    
      <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
      </properties>
    
      <dependencies>
        <dependency>
          <groupId>org.scala-lang</groupId>
          <artifactId>scala-library</artifactId>
          <version>Scala version, for example, 2.11.8</version>
          <scope>provided</scope>
        </dependency>
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-core_Scala major.minor.version, for example, 2.11</artifactId>
          <version>Spark version, for example, 2.3.1</version>
          <scope>provided</scope>
        </dependency>
      </dependencies>
    </project>
  2. Copie o código WordCount.java listado abaixo para sua máquina local.
    1. Crie um conjunto de diretórios com o caminho src/main/java/dataproc/codelab:
      mkdir -p src/main/java/dataproc/codelab
      
    2. Copie WordCount.java para sua máquina local em src/main/java/dataproc/codelab:
      cp WordCount.java src/main/java/dataproc/codelab
      

    O WordCount.java é um job simples do Spark em Java que lê arquivos de texto do Cloud Storage, faz a contagem de palavras e grava os resultados em um arquivo de texto no Cloud Storage.

    package dataproc.codelab;
    
    import java.util.Arrays;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import scala.Tuple2;
    
    public class WordCount {
      public static void main(String[] args) {
        if (args.length != 2) {
          throw new IllegalArgumentException("Exactly 2 arguments are required: <inputUri> <outputUri>");
        }
        String inputPath = args[0];
        String outputPath = args[1];
        JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("Word Count"));
        JavaRDD<String> lines = sparkContext.textFile(inputPath);
        JavaRDD<String> words = lines.flatMap(
            (String line) -> Arrays.asList(line.split(" ")).iterator()
        );
        JavaPairRDD<String, Integer> wordCounts = words.mapToPair(
            (String word) -> new Tuple2<>(word, 1)
        ).reduceByKey(
            (Integer count1, Integer count2) -> count1 + count2
        );
        wordCounts.saveAsTextFile(outputPath);
      }
    }
  3. Criar o pacote.
    mvn clean package
    
    Se a build for bem-sucedida, um target/word-count-1.0.jar será criado.
  4. Prepare o pacote para o Cloud Storage.
    gcloud storage cp target/word-count-1.0.jar \
        gs://${BUCKET_NAME}/java/word-count-1.0.jar
    

Scala

  1. Copie o arquivo build.sbt para sua máquina local. O arquivo build.sbt a seguir especifica as dependências da biblioteca Scala e Spark, que recebem um escopo provided para indicar que o cluster do Dataproc fornecerá essas bibliotecas no ambiente de execução. O arquivo build.sbt não especifica uma dependência do Cloud Storage porque o conector implementa a interface HDFS padrão. Quando um job do Spark acessa arquivos de cluster do Cloud Storage (arquivos com URIs que começam com gs:// ), o sistema usa automaticamente o conector do Cloud Storage para acessar os arquivos no Cloud Storage
    scalaVersion := "Scala version, for example, 2.11.8"
    
    name := "word-count"
    organization := "dataproc.codelab"
    version := "1.0"
    
    libraryDependencies ++= Seq(
      "org.scala-lang" % "scala-library" % scalaVersion.value % "provided",
      "org.apache.spark" %% "spark-core" % "Spark version, for example, 2.3.1" % "provided"
    )
  2. Copie word-count.scala para sua máquina local. Ele é um job simples do Spark em Java que lê arquivos de texto do Cloud Storage, faz a contagem de palavras e grava os resultados em um arquivo de texto no Cloud Storage.
    package dataproc.codelab
    
    import org.apache.spark.SparkContext
    import org.apache.spark.SparkConf
    
    object WordCount {
      def main(args: Array[String]) {
        if (args.length != 2) {
          throw new IllegalArgumentException(
              "Exactly 2 arguments are required: <inputPath> <outputPath>")
        }
    
        val inputPath = args(0)
        val outputPath = args(1)
    
        val sc = new SparkContext(new SparkConf().setAppName("Word Count"))
        val lines = sc.textFile(inputPath)
        val words = lines.flatMap(line => line.split(" "))
        val wordCounts = words.map(word => (word, 1)).reduceByKey(_ + _)
        wordCounts.saveAsTextFile(outputPath)
      }
    }
  3. Criar o pacote.
    sbt clean package
    
    Se o build for bem-sucedido, um target/scala-2.11/word-count_2.11-1.0.jar é criada.
  4. Prepare o pacote para o Cloud Storage.
    gcloud storage cp target/scala-2.11/word-count_2.11-1.0.jar \
        gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar
    

Python

  1. Copie word-count.py para sua máquina local. Ele é um job simples do Spark em Python usando PySpark que lê arquivos de texto do Cloud Storage, faz a contagem de palavras e grava os resultados em um arquivo de texto no Cloud Storage.
    #!/usr/bin/env python
    
    import pyspark
    import sys
    
    if len(sys.argv) != 3:
      raise Exception("Exactly 2 arguments are required: <inputUri> <outputUri>")
    
    inputUri=sys.argv[1]
    outputUri=sys.argv[2]
    
    sc = pyspark.SparkContext()
    lines = sc.textFile(sys.argv[1])
    words = lines.flatMap(lambda line: line.split())
    wordCounts = words.map(lambda word: (word, 1)).reduceByKey(lambda count1, count2: count1 + count2)
    wordCounts.saveAsTextFile(sys.argv[2])

Enviar o job

Execute o comando gcloud a seguir para enviar o job de contagem de palavras ao cluster do Dataproc.

Java

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/java/word-count-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Scala

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Python

gcloud dataproc jobs submit pyspark word-count.py \
    --cluster=${CLUSTER} \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Veja o resultado

Após a conclusão do job, execute o comando da CLI gcloud a seguir para conferir a saída de contagem de palavras.

gcloud storage cat gs://${BUCKET_NAME}/output/*

O resultado da contagem de palavras deve ser semelhante a este:

(a,2)
(call,1)
(What's,1)
(sweet.,1)
(we,1)
(as,1)
(name?,1)
(any,1)
(other,1)
(rose,1)
(smell,1)
(name,1)
(would,1)
(in,1)
(which,1)
(That,1)
(By,1)

Limpar

Depois de concluir o tutorial, você pode limpar os recursos que criou para que eles parem de usar a cota e gerar cobranças. Nas seções a seguir, você aprenderá a excluir e desativar esses recursos.

Excluir o projeto

O jeito mais fácil de evitar cobranças é excluindo o projeto que você criou para o tutorial.

Para excluir o projeto:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Como excluir o cluster do Dataproc

Em vez de excluir o projeto, convém excluir o cluster dentro do projeto.

Como excluir o bucket do Cloud Storage

Console do Google Cloud

  1. In the Google Cloud console, go to the Cloud Storage Buckets page.

    Go to Buckets

  2. Click the checkbox for the bucket that you want to delete.
  3. To delete the bucket, click Delete, and then follow the instructions.

Linha de comando

    Excluir o bucket:
    gcloud storage buckets delete BUCKET_NAME

A seguir