Usar o Dataproc, o BigQuery e o Apache Spark ML para machine learning


O conector do BigQuery para Apache Spark (em inglês) permite que cientistas de dados combinem o poder do BigQuery um mecanismo SQL escalonável com Machine Learning do Apache Spark recursos. Neste tutorial, mostramos como usar o Dataproc, o BigQuery e o Apache Spark ML para realizar machine learning em um conjunto de dados.

Objetivos

Usar a regressão linear para criar um modelo de peso de nascimento como uma função de cinco fatores:

  • semanas de gestação
  • idade da mãe
  • idade do pai
  • ganho de peso da mãe durante a gravidez
  • escala de Apgar

Use as seguintes ferramentas:

  • BigQuery, para preparar a tabela de entrada de regressão linear, que é gravados no projeto do Google Cloud
  • Python, para consultar e gerenciar dados no BigQuery
  • Apache Spark, para acessar a tabela de regressão linear resultante
  • Spark ML, para criar e avaliar o modelo
  • Job do PySpark do Dataproc para invocar funções do Spark ML

Custos

Neste documento, você usará os seguintes componentes faturáveis do Google Cloud:

  • Compute Engine
  • Dataproc
  • BigQuery

Para gerar uma estimativa de custo baseada na projeção de uso deste tutorial, use a calculadora de preços. Novos usuários do Google Cloud podem estar qualificados para uma avaliação gratuita.

Antes de começar

Um cluster do Dataproc tem os componentes do Spark, inclusive o Spark ML, instalados. Para configurar um cluster do Dataproc e executar o código deste exemplo, você precisará fazer (ou ter feito) o seguinte:

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Enable the Dataproc, BigQuery, Compute Engine APIs.

    Enable the APIs

  4. Install the Google Cloud CLI.
  5. To initialize the gcloud CLI, run the following command:

    gcloud init
  6. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  7. Enable the Dataproc, BigQuery, Compute Engine APIs.

    Enable the APIs

  8. Install the Google Cloud CLI.
  9. To initialize the gcloud CLI, run the following command:

    gcloud init
  10. Crie um cluster do Dataproc no projeto. Seu cluster precisa executar uma versão do Dataproc com Spark 2.0 ou superior, incluindo bibliotecas de machine learning.

Criar um subconjunto de dados do BigQuery natality

Nesta seção, você cria um conjunto de dados no projeto e uma tabela no conjunto de dados para que queira copiar um subconjunto de dados da taxa de natalidade do conjunto de dados natality do BigQuery disponível publicamente. Posteriormente, neste tutorial, você usará os dados do subconjunto nesta tabela para prever o peso de nascimento como uma função da idade materna, da idade paterna e das semanas de gestação.

É possível criar o subconjunto de dados usando o console do Google Cloud ou executando um script Python na máquina local.

Console

  1. Crie um conjunto de dados no projeto.

    1. Acesse a IU da Web do BigQuery.
    2. No painel de navegação esquerdo, clique no nome do projeto e em CRIAR CONJUNTO DE DADOS.
    3. Na caixa de diálogo Criar conjunto de dados:
      1. Em ID do conjunto de dados, digite "natality_regression".
      2. Em Local de dados, escolha um local para o conjunto de dados. O local do valor padrão é US multi-region. Depois que um conjunto de dados é criado, o local não pode ser alterado.
      3. Em Validade da tabela padrão, escolha uma das seguintes opções:
        • Nunca (padrão): você deve excluir a tabela manualmente.
        • Número de dias: a tabela será excluída após o número de dias especificado a partir da data de criação.
      4. Para Criptografia, escolha uma das seguintes opções:
      5. Clique em Criar conjunto de dados.
  2. Execute uma consulta no conjunto de dados de natalidade pública e salve os resultados da consulta em uma nova tabela no conjunto de dados.

    1. Copie e cole a seguinte consulta no Editor de Consultas e clique em Executar.
      CREATE OR REPLACE TABLE natality_regression.regression_input as
      SELECT
      weight_pounds,
      mother_age,
      father_age,
      gestation_weeks,
      weight_gain_pounds,
      apgar_5min
      FROM
      `bigquery-public-data.samples.natality`
      WHERE
      weight_pounds IS NOT NULL
      AND mother_age IS NOT NULL
      AND father_age IS NOT NULL
      AND gestation_weeks IS NOT NULL
      AND weight_gain_pounds IS NOT NULL
      AND apgar_5min IS NOT NULL
      
    2. Após a conclusão da consulta (em aproximadamente um minuto), os resultados são salvas como "regression_input" Tabela do BigQuery no conjunto de dados natality_regression do projeto.

Python

Antes de testar este exemplo, siga as instruções de configuração do Python no Guia de início rápido do Dataproc: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python do Dataproc.

Para autenticar no Dataproc, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

  1. Consulte Como configurar um ambiente de desenvolvimento em Python para instruções sobre como instalar o Python e a biblioteca de cliente do Google Cloud para Python (necessário para executar o código). É recomendado instalar e usar um virtualenv do Python.

  2. Copie e cole o código natality_tutorial.py abaixo em um shell python na máquina local. Pressione o botão <return> no shell para executar o código para criar um conjunto de dados "natality_regression" do BigQuery no seu projeto padrão do Google Cloud com uma tabela "regression_input" preenchida com um subconjunto dos dados natality públicos.

    """Create a Google BigQuery linear regression input table.
    
    In the code below, the following actions are taken:
    * A new dataset is created "natality_regression."
    * A query is run against the public dataset,
        bigquery-public-data.samples.natality, selecting only the data of
        interest to the regression, the output of which is stored in a new
        "regression_input" table.
    * The output table is moved over the wire to the user's default project via
        the built-in BigQuery Connector for Spark that bridges BigQuery and
        Cloud Dataproc.
    """
    
    from google.cloud import bigquery
    
    # Create a new Google BigQuery client using Google Cloud Platform project
    # defaults.
    client = bigquery.Client()
    
    # Prepare a reference to a new dataset for storing the query results.
    dataset_id = "natality_regression"
    dataset_id_full = f"{client.project}.{dataset_id}"
    
    dataset = bigquery.Dataset(dataset_id_full)
    
    # Create the new BigQuery dataset.
    dataset = client.create_dataset(dataset)
    
    # Configure the query job.
    job_config = bigquery.QueryJobConfig()
    
    # Set the destination table to where you want to store query results.
    # As of google-cloud-bigquery 1.11.0, a fully qualified table ID can be
    # used in place of a TableReference.
    job_config.destination = f"{dataset_id_full}.regression_input"
    
    # Set up a query in Standard SQL, which is the default for the BigQuery
    # Python client library.
    # The query selects the fields of interest.
    query = """
        SELECT
            weight_pounds, mother_age, father_age, gestation_weeks,
            weight_gain_pounds, apgar_5min
        FROM
            `bigquery-public-data.samples.natality`
        WHERE
            weight_pounds IS NOT NULL
            AND mother_age IS NOT NULL
            AND father_age IS NOT NULL
            AND gestation_weeks IS NOT NULL
            AND weight_gain_pounds IS NOT NULL
            AND apgar_5min IS NOT NULL
    """
    
    # Run the query.
    client.query_and_wait(query, job_config=job_config)  # Waits for the query to finish
  3. Confirme a criação do conjunto de dados natality_regression e da tabela regression_input.

Executar uma regressão linear

Nesta seção, você vai executar uma regressão linear do PySpark enviando o job ao serviço do Dataproc usando o console do Google Cloud ou executando o comando gcloud em um terminal local.

Console

  1. Copie e cole o seguinte código em um novo arquivo natality_sparkml.py na máquina local.

    """Run a linear regression using Apache Spark ML.
    
    In the following PySpark (Spark Python API) code, we take the following actions:
    
      * Load a previously created linear regression (BigQuery) input table
        into our Cloud Dataproc Spark cluster as an RDD (Resilient
        Distributed Dataset)
      * Transform the RDD into a Spark Dataframe
      * Vectorize the features on which the model will be trained
      * Compute a linear regression using Spark ML
    
    """
    from pyspark.context import SparkContext
    from pyspark.ml.linalg import Vectors
    from pyspark.ml.regression import LinearRegression
    from pyspark.sql.session import SparkSession
    # The imports, above, allow us to access SparkML features specific to linear
    # regression as well as the Vectors types.
    
    
    # Define a function that collects the features of interest
    # (mother_age, father_age, and gestation_weeks) into a vector.
    # Package the vector in a tuple containing the label (`weight_pounds`) for that
    # row.
    def vector_from_inputs(r):
      return (r["weight_pounds"], Vectors.dense(float(r["mother_age"]),
                                                float(r["father_age"]),
                                                float(r["gestation_weeks"]),
                                                float(r["weight_gain_pounds"]),
                                                float(r["apgar_5min"])))
    
    sc = SparkContext()
    spark = SparkSession(sc)
    
    # Read the data from BigQuery as a Spark Dataframe.
    natality_data = spark.read.format("bigquery").option(
        "table", "natality_regression.regression_input").load()
    # Create a view so that Spark SQL queries can be run against the data.
    natality_data.createOrReplaceTempView("natality")
    
    # As a precaution, run a query in Spark SQL to ensure no NULL values exist.
    sql_query = """
    SELECT *
    from natality
    where weight_pounds is not null
    and mother_age is not null
    and father_age is not null
    and gestation_weeks is not null
    """
    clean_data = spark.sql(sql_query)
    
    # Create an input DataFrame for Spark ML using the above function.
    training_data = clean_data.rdd.map(vector_from_inputs).toDF(["label",
                                                                 "features"])
    training_data.cache()
    
    # Construct a new LinearRegression object and fit the training data.
    lr = LinearRegression(maxIter=5, regParam=0.2, solver="normal")
    model = lr.fit(training_data)
    # Print the model summary.
    print("Coefficients:" + str(model.coefficients))
    print("Intercept:" + str(model.intercept))
    print("R^2:" + str(model.summary.r2))
    model.summary.residuals.show()

  2. Copie o arquivo natality_sparkml.py local para um bucket do Cloud Storage no seu projeto.

    gcloud storage cp natality_sparkml.py gs://bucket-name
    

  3. Execute a regressão na página Enviar um job do Dataproc.

    1. No campo Arquivo principal python, insira o URI gs:// do bucket do Cloud Storage no qual sua cópia do arquivo natality_sparkml.py está localizada.

    2. Selecione PySpark como o Tipo de job.

    3. Insira gs://spark-lib/bigquery/spark-bigquery-latest_2.12.jar no campo Arquivos Jar. Isso torna o conector spark-bigquery disponível para o aplicativo PySpark no ambiente de execução para permitir a leitura de dados do BigQuery em um Spark DataFrame.

    4. Preencha os campos ID do job, Região e Cluster.

    5. Clique em Enviar para executar o job no cluster.

Quando o job é concluído, o resumo do modelo de saída de regressão linear é exibido na janela de detalhes Job do Dataproc.

gcloud

  1. Copie e cole o seguinte código em um novo arquivo natality_sparkml.py na máquina local.

    """Run a linear regression using Apache Spark ML.
    
    In the following PySpark (Spark Python API) code, we take the following actions:
    
      * Load a previously created linear regression (BigQuery) input table
        into our Cloud Dataproc Spark cluster as an RDD (Resilient
        Distributed Dataset)
      * Transform the RDD into a Spark Dataframe
      * Vectorize the features on which the model will be trained
      * Compute a linear regression using Spark ML
    
    """
    from pyspark.context import SparkContext
    from pyspark.ml.linalg import Vectors
    from pyspark.ml.regression import LinearRegression
    from pyspark.sql.session import SparkSession
    # The imports, above, allow us to access SparkML features specific to linear
    # regression as well as the Vectors types.
    
    
    # Define a function that collects the features of interest
    # (mother_age, father_age, and gestation_weeks) into a vector.
    # Package the vector in a tuple containing the label (`weight_pounds`) for that
    # row.
    def vector_from_inputs(r):
      return (r["weight_pounds"], Vectors.dense(float(r["mother_age"]),
                                                float(r["father_age"]),
                                                float(r["gestation_weeks"]),
                                                float(r["weight_gain_pounds"]),
                                                float(r["apgar_5min"])))
    
    sc = SparkContext()
    spark = SparkSession(sc)
    
    # Read the data from BigQuery as a Spark Dataframe.
    natality_data = spark.read.format("bigquery").option(
        "table", "natality_regression.regression_input").load()
    # Create a view so that Spark SQL queries can be run against the data.
    natality_data.createOrReplaceTempView("natality")
    
    # As a precaution, run a query in Spark SQL to ensure no NULL values exist.
    sql_query = """
    SELECT *
    from natality
    where weight_pounds is not null
    and mother_age is not null
    and father_age is not null
    and gestation_weeks is not null
    """
    clean_data = spark.sql(sql_query)
    
    # Create an input DataFrame for Spark ML using the above function.
    training_data = clean_data.rdd.map(vector_from_inputs).toDF(["label",
                                                                 "features"])
    training_data.cache()
    
    # Construct a new LinearRegression object and fit the training data.
    lr = LinearRegression(maxIter=5, regParam=0.2, solver="normal")
    model = lr.fit(training_data)
    # Print the model summary.
    print("Coefficients:" + str(model.coefficients))
    print("Intercept:" + str(model.intercept))
    print("R^2:" + str(model.summary.r2))
    model.summary.residuals.show()

  2. Copie o arquivo natality_sparkml.py local para um bucket do Cloud Storage no seu projeto.

    gcloud storage cp natality_sparkml.py gs://bucket-name
    

  3. Envie o job Pyspark para o serviço Dataproc executando o comando gcloud, mostrado abaixo, a partir de uma janela de terminal na máquina local.

    1. O valor da sinalização --jars torna o conector spark-bigquery disponível para o jobv do PySpark no ambiente de execução para permitir a leitura de dados do BigQuery em um Spark DataFrame.
      gcloud dataproc jobs submit pyspark \
          gs://your-bucket/natality_sparkml.py \
          --cluster=cluster-name \
          --region=region \
          --jars=gs://spark-lib/bigquery/spark-bigquery-with-dependencies_SCALA_VERSION-CONNECTOR_VERSION.jar
      

A saída de regressão linear (resumo do modelo) é exibida na janela do terminal quando o job é concluído.

<<< # Imprime o resumo do modelo.
... imprimir "Coeficientes:" + str(model.coeficientes)
Coefficients:[0.0166657454602,-0.00296751984046,0.235714392936,0.00213002070133,-0.00048577251587]
&lt;&lt;&lt; print "Intercept:" + str(model.intercept)
Interceptação:-2.26130330748
&lt;&lt;&lt; imprimir "R^2:" + str(model.summary.r2)
R^2:0,295200579035
&lt;&lt;&lt; model.summary.residuals.show()
+--------------------+
| residuals|
+--------------------+
| -0,7234737533344147|
| -0,985466980630501|
| -0,6669710598385468|
| 1,4162434829714794|
|-0,09373154375186754|
|-0,15461747949235072|
| 0,32659061654192545|
| 1,5053877697929803|
| -0,640142797263989|
| 1,229530260294963|
|-0,03776160295256...|
| -0,5160734239126814|
| -1,5165972740062887|
| 1,3269085258245008|
| 1,7604670124710626|
| 1,2348130901905972|
| 2,318660276655887|
| 1,0936947030883175|
| 1,0169768511417363|
| -1,7744915698181583|
+--------------------+
mostrando apenas as 20 primeiras linhas.

  

Limpar

Depois de concluir o tutorial, você pode limpar os recursos que criou para que eles parem de usar a cota e gerar cobranças. Nas seções a seguir, você aprenderá a excluir e desativar esses recursos.

Excluir o projeto

O jeito mais fácil de evitar cobranças é excluindo o projeto que você criou para o tutorial.

Para excluir o projeto:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Como excluir o cluster do Dataproc

Consulte Excluir um cluster.

A seguir