Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Criar um cluster do Dataproc usando o console Google Cloud
Nesta página, mostramos como usar o console Google Cloud para criar um cluster do Dataproc, executar um job básico do Apache Spark no cluster e modificar o número de workers.
Para seguir as instruções detalhadas desta tarefa diretamente no console do
Google Cloud , clique em Orientação:
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
Na caixa de diálogo Criar cluster do Dataproc, clique em Criar na
linha Cluster no Compute Engine.
No campo Nome do cluster, insira example-cluster.
Nas listas Região e Zona, selecione uma região e uma zona.
Selecione uma região (por exemplo, us-east1 ou europe-west1)
para isolar recursos, como instâncias de máquina virtual (VM) e
locais de armazenamento de metadados e do Cloud Storage utilizados pelo
Dataproc na região. Para mais informações, consulte Regiões e zonas disponíveis e Endpoints regionais.
Para todas as outras opções, use as configurações padrão.
Para criar o cluster, clique em Criar.
O novo cluster aparece em uma lista na página Clusters. O status é
Em provisionamento até que o cluster esteja pronto para uso. Depois disso, o status
muda para Em execução. O provisionamento do cluster pode levar alguns minutos.
Enviar um job do Spark
Envie um job do Spark que estima um valor de Pi:
No menu de navegação do Dataproc, clique em Jobs.
Na página Jobs, clique em
add_boxEnviar job e faça o seguinte:
No campo ID do job, use a configuração padrão ou forneça um ID exclusivo para seu projeto Google Cloud .
No menu suspenso Cluster, selecione example-cluster.
Em Tipo de job, selecione Spark.
No campo Classe principal ou jar, insira
org.apache.spark.examples.SparkPi.
No campo Arquivos JAR, insira file:///usr/lib/spark/examples/jars/spark-examples.jar.
No campo Argumentos, insira 1000 para definir o número de tarefas.
Clique em Enviar.
O job vai aparecer na página Detalhes do job. O status do job é
Em execução ou Iniciando e, depois, muda para Concluído após
o envio.
Para evitar a rolagem na saída, clique em Quebra de linha: desativada. A saída
será semelhante a esta:
Pi is roughly 3.1416759514167594
Para ver os detalhes do job, clique na guia Configuração.
Atualize um cluster
Atualize o cluster mudando o número de instâncias de worker:
No menu de navegação do Dataproc, clique em Clusters.
Na lista de clusters, clique em example-cluster.
Na página Detalhes do cluster, clique na guia Configuração.
As configurações do cluster são exibidas.
Clique em mode_editEditar.
No campo Nós de trabalho, digite 5.
Clique em Salvar.
Seu cluster foi atualizado. Para diminuir o número de nós de trabalho ao valor original, siga o mesmo procedimento.
Limpar
Para evitar cobranças na sua conta do Google Cloud pelos
recursos usados nesta página, siga estas etapas.
Para excluir o cluster, na página Detalhes do cluster de example-cluster, clique em deleteExcluir.
Para confirmar que você quer excluir o cluster, clique em Excluir.
A seguir
Siga este guia de início rápido usando outras ferramentas:
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-04 UTC."],[[["\u003cp\u003eThis guide demonstrates how to create a Dataproc cluster using the Google Cloud console, with steps provided in a guided format.\u003c/p\u003e\n"],["\u003cp\u003eYou can submit an Apache Spark job to the cluster, specifically one that estimates Pi using the Monte Carlo method, by following the provided steps.\u003c/p\u003e\n"],["\u003cp\u003eThe guide shows how to modify the worker nodes of an existing cluster, allowing you to increase or decrease the resources allocated to your cluster.\u003c/p\u003e\n"],["\u003cp\u003eInstructions are included for cleaning up the cluster to avoid incurring unwanted charges.\u003c/p\u003e\n"],["\u003cp\u003eThe content also provides additional resources, links to quickstart guides for using other tools, and additional guidance on creating firewall rules and writing Spark Scala jobs.\u003c/p\u003e\n"]]],[],null,["Create a Dataproc cluster by using the Google Cloud console This page shows you how to use the Google Cloud console to create a\nDataproc cluster, run a basic\n[Apache Spark](http://spark.apache.org/)\njob in the cluster, and then modify the number of workers in the cluster.\n\n*** ** * ** ***\n\nTo follow step-by-step guidance for this task directly in the\nGoogle Cloud console, click **Guide me**:\n\n[Guide me](https://console.cloud.google.com/freetrial?redirectPath=/?walkthrough_id=dataproc--quickstart-dataproc-console)\n\n*** ** * ** ***\n\nBefore you begin\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Dataproc API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=dataproc)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Dataproc API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=dataproc)\n\n\u003cbr /\u003e\n\nCreate a cluster\n\n1. In the Google Cloud console, go to the Dataproc\n **Clusters** page.\n\n [Go to Clusters](https://console.cloud.google.com/dataproc/clusters)\n2. Click **Create cluster**.\n\n3. In the **Create Dataproc cluster** dialog, click **Create** in\n the **Cluster on Compute Engine** row.\n\n4. In the **Cluster name** field, enter `example-cluster`.\n\n5. In the **Region** and **Zone** lists, select a region and zone.\n\n Select a region (for example, `us-east1` or `europe-west1`)\n to isolate resources, such as virtual machine (VM) instances and\n Cloud Storage and metadata storage locations that are utilized by\n Dataproc, in the region. For more\n information, see\n [Available regions and zones](/compute/docs/regions-zones/regions-zones#available)\n and\n [Regional endpoints](/dataproc/docs/concepts/regional-endpoints).\n6. For all the other options, use the default settings.\n\n7. To create the cluster, click **Create**.\n\n Your new cluster appears in a list on the **Clusters** page. The status is\n **Provisioning** until the cluster is ready to use, and then the status\n changes to **Running**. Provisioning the cluster might take a couple of\n minutes.\n\nSubmit a Spark job\n\nSubmit a Spark job that estimates a value of Pi:\n\n1. In the Dataproc navigation menu, click **Jobs**.\n2. On the **Jobs** page, click\n add_box **Submit job**, and then do\n the following:\n\n 1. In the **Job ID** field, use the default setting, or provide an ID that is unique to your Google Cloud project.\n 2. In the **Cluster** drop-down, select **`example-cluster`**.\n 3. For **Job type** , select **Spark**.\n 4. In the **Main class or jar** field, enter `org.apache.spark.examples.SparkPi`.\n 5. In the **Jar files** field, enter `file:///usr/lib/spark/examples/jars/spark-examples.jar`.\n 6. In the **Arguments** field, enter `1000` to set the number of tasks.\n\n | **Note:** The Spark job estimates Pi by using the [Monte Carlo method](https://wikipedia.org/wiki/Monte_Carlo_method). It generates *x* and *y* points on a coordinate plane that models a circle enclosed by a unit square. The input argument (`1000`) determines the number of x-y pairs to generate; the more pairs generated, the greater the accuracy of the estimation. This estimation uses Dataproc worker nodes to parallelize the computation. For more information, see [Estimating Pi using the Monte Carlo Method](https://academo.org/demos/estimating-pi-monte-carlo/) and [JavaSparkPi.java on GitHub](https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/JavaSparkPi.java).\n 7. Click **Submit**.\n\n Your job is displayed on the **Job details** page. The job status is\n **Running** or **Starting** , and then it changes to **Succeeded** after\n it's submitted.\n\n To avoid scrolling in the output, click **Line wrap: off**. The output\n is similar to the following: \n\n ```\n Pi is roughly 3.1416759514167594\n ```\n\n To view job details, click the **Configuration** tab.\n\nUpdate a cluster\n\nUpdate your cluster by changing the number of worker instances:\n\n1. In the Dataproc navigation menu, click **Clusters**.\n2. In the list of clusters, click **`example-cluster`**.\n3. On the **Cluster details** page, click the **Configuration** tab.\n\n Your cluster settings are displayed.\n4. Click mode_edit **Edit**.\n\n5. In the **Worker nodes** field, enter `5`.\n\n6. Click **Save**.\n\nYour cluster is now updated. To decrease the number of worker nodes to the\noriginal value, follow the same procedure.\n\nClean up\n\n\nTo avoid incurring charges to your Google Cloud account for\nthe resources used on this page, follow these steps.\n\n1. To delete the cluster, on the **Cluster details** page for **`example-cluster`** , click delete **Delete**.\n2. To confirm that you want to delete the cluster, click **Delete**.\n\nWhat's next\n\n- Try this quickstart by using other tools:\n - [Use the API Explorer](/dataproc/docs/quickstarts/create-cluster-template).\n - [Use the Google Cloud CLI](/dataproc/docs/quickstarts/create-cluster-gcloud).\n- Learn how to [create robust firewall rules when you create a project](/dataproc/docs/concepts/configuring-clusters/network).\n- Learn how to [write and run a Spark Scala job](/dataproc/docs/tutorials/spark-scala)."]]