Previously, if a VM type was unavailable when you submitted
a cluster creation request, the request failed, and you needed to update
your request, script, or code to specify a "next-best" VM type. This
re-request process could involve multiple iterations until you specified a VM type
that was available.
The Dataproc Flexible VM feature helps your cluster creation
request succeed by selecting secondary worker VM types from your ranked VM lists, and then searching
for zones within your specified cluster region with availability of the listed VM types.
Terminology
VM type:
The family, memory capacity, and number of CPU cores of a VM instance.
Dataproc supports the use of
predefined and custom VM types.
Secondary workers:
Secondary workers
don't store data. They function only as processing nodes. You can use
secondary workers to scale compute without scaling storage.
Limitations and considerations
Flexible VMs are available in Dataproc on Compute Engine 2.0.74+,
2.1.22+ and later Dataproc on Compute Engine
image versions.
You can specify flexible VMs for secondary workers only.
You can specify up to five ranked VM type lists, with up to 10 VM types
in a list. For more information, see How to request flexible VMs.
The creation of a cluster with flexible VMs requires the use of
Dataproc autozone placement, which
allows Dataproc to choose the zone that has the capacity to fulfill
your VM type requests.
If your cluster creation request includes an
autoscaling policy,
flexible VMs can be from different VM families, but they must have the same
amount of memory and core count.
When provisioning flexible VMs, Dataproc consumes "any matching"
available reservations, but not "specific" reservations (see
Consume reserved instances).
Machine types that match reservations are first selected within a rank, followed by
VM types with the largest number of CPUs.
Although you can specify different CPU-to-memory ratios for primary and
secondary worker V types in a cluster, this can lead to performance degradation
because the smallest CPU-to-memory ratio is used as the smallest container unit.
If you update a cluster that was created using flexible VMs,
Dataproc selects and adds workers from the flexible VM lists that
you provided when you created your cluster.
Request flexible VMs
You can specify flexible VMs when you create a Dataproc cluster
using the Google Cloud console, Google Cloud CLI, or Dataproc API.
You can specify up to five ranked VM type lists, with up to 10 VM types
in a list. Lowest ranked lists have the highest priority. By default, flexible
VM lists have a rank of 0. Within a list, Dataproc prioritizes VM
types with unused reservations, followed by the largest VM sizes.
VM types within a list with the same CPU count are treated equally.
Console
To create a cluster with secondary worker flexible VMs:
The Set up cluster panel is selected with fields filled in with default
values. You can change the suggested name and the cluster region, and
make other changes. Make sure that Any is selected as the cluster
Zone to allow
Dataproc autozone placement
to choose the zone that has the best availability of the
VM types specified in your flexible VM lists.
Select the Configure nodes panel. In the Secondary worker nodes
section, specify the number and preemptibility of secondary workers.
Click Add a secondary worker for each rank of secondary workers,
specifying one or more machine types to include in each rank.
After confirming and specifying cluster details in the cluster create panels,
click Create.
gcloud
Use the
gcloud dataproc clusters create
command to add multiple secondary-worker-machine-types flags to specify ranked
flexible VM lists for
Dataproc secondary workers.
The default flexible VM secondary worker type is Spot, which is a preemptible type.
In the following gcloud CLI example, Dataproc attempts
to provision secondary workers with n2-standard-8 VMs first (rank 0). If
n2-standard-8 machines are not available, Dataproc attempts
to provision secondary workers with either e2-standard-8 or t2d-standard-8
VMs (rank 1).
--zone="": The Flexible VM feature requires
Dataproc autozone placement to
allow Dataproc to choose the zone that has your
VM types available for use. Passing an empty value
("") to the --zone flag overrides any zone selection specified in your default
gcloud config list.
Dataproc generates component role properties based on machine
cores and memory. You can override these system-generated properties with the
--properties flag, using the following syntax:
Use cluster properties to customize component roles: Dataproc
generates component role properties based on VM cores and memory.
You can override these system-generated properties by adding
SoftwareConfig.properties
to your clusters.create request, using the following key=value syntax:
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[[["\u003cp\u003eFlexible VMs allow you to specify prioritized lists of VM types for Dataproc secondary workers, ensuring cluster creation success even if preferred VM types are unavailable.\u003c/p\u003e\n"],["\u003cp\u003eThis feature uses ranked lists of up to five different lists of machine types, with each list containing up to 10 VM types and employing Dataproc autozone placement to select the best-suited zone.\u003c/p\u003e\n"],["\u003cp\u003eFlexible VMs can be set up when creating a Dataproc cluster through the Google Cloud console, gcloud CLI, or Dataproc API, and they only apply to secondary workers that function as processing nodes without storing data.\u003c/p\u003e\n"],["\u003cp\u003eWhen using an autoscaling policy, flexible VMs can be from different families but must maintain the same memory and core count, and the use of a uniform CPU-to-memory ratio for all workers is advised to prevent performance degradation.\u003c/p\u003e\n"],["\u003cp\u003eWhen provisioning flexible VMs, Dataproc prioritizes VM types that have matching unused reservations and then the largest VM sizes within the specified ranks, adhering to Google Cloud quotas.\u003c/p\u003e\n"]]],[],null,["Flexible VMs is a Dataproc feature that lets you specify\nprioritized lists of [VM types](#vm_types) for Dataproc\n[secondary workers](#secondary_workers) when you\n[create a Dataproc cluster](/dataproc/docs/guides/create-cluster).\n\nWhy use flexible VMs\n\nPreviously, if a VM type was unavailable when you submitted\na cluster creation request, the request failed, and you needed to update\nyour request, script, or code to specify a \"next-best\" VM type. This\nre-request process could involve multiple iterations until you specified a VM type\nthat was available.\n\nThe Dataproc Flexible VM feature helps your cluster creation\nrequest succeed by selecting secondary worker VM types from your ranked VM lists, and then searching\nfor zones within your specified cluster region with availability of the listed VM types.\n\nTerminology\n\n- VM type:\n The family, memory capacity, and number of CPU cores of a VM instance.\n Dataproc supports the use of\n [predefined and custom VM types](/dataproc/docs/concepts/compute/supported-machine-types).\n\n- Secondary workers:\n [Secondary workers](/dataproc/docs/concepts/compute/secondary-vms#gcloud-command)\n don't store data. They function only as processing nodes. You can use\n secondary workers to scale compute without scaling storage.\n\nLimitations and considerations\n\n- Flexible VMs are available in Dataproc on Compute Engine `2.0.74+`,\n `2.1.22+` and later Dataproc on Compute Engine\n [image versions](/dataproc/docs/concepts/versioning/dataproc-version-clusters#supported-dataproc-image-versions).\n\n- You can specify flexible VMs for secondary workers only.\n\n- You can specify up to five ranked VM type lists, with up to 10 VM types\n in a list. For more information, see [How to request flexible VMs](#how_to_request_flexible_vms).\n\n- The creation of a cluster with flexible VMs requires the use of\n [Dataproc autozone placement](/dataproc/docs/concepts/configuring-clusters/auto-zone), which\n allows Dataproc to choose the zone that has the capacity to fulfill\n your VM type requests.\n\n- If your cluster creation request includes an\n [autoscaling policy](/dataproc/docs/concepts/configuring-clusters/autoscaling#create_an_autoscaling_cluster),\n flexible VMs can be from different VM families, but they must have the same\n amount of memory and core count.\n\n- When provisioning flexible VMs, Dataproc consumes \"any matching\"\n available reservations, but not \"specific\" reservations (see\n [Consume reserved instances](/compute/docs/instances/reservations-consume#consuming_reserved_instances)).\n Machine types that match reservations are first selected within a rank, followed by\n VM types with the largest number of CPUs.\n\n- [Dataproc applies Google Cloud quotas](/dataproc/quotas)\n to flexible VM provisioning.\n\n- Although you can specify different CPU-to-memory ratios for primary and\n secondary worker V types in a cluster, this can lead to performance degradation\n because the smallest CPU-to-memory ratio is used as the smallest container unit.\n\n | Use a uniform CPU-to-memory ratio for primary and secondary workers, including flexible VMs.\n\n \u003cbr /\u003e\n\n- If you update a cluster that was created using flexible VMs,\n Dataproc selects and adds workers from the flexible VM lists that\n you provided when you created your cluster.\n\nRequest flexible VMs\n\nYou can specify flexible VMs when you create a Dataproc cluster\nusing the Google Cloud console, Google Cloud CLI, or Dataproc API.\n\n- You can specify up to five ranked VM type lists, with up to 10 VM types in a list. Lowest ranked lists have the highest priority. By default, flexible VM lists have a rank of 0. Within a list, Dataproc prioritizes VM types with unused reservations, followed by the largest VM sizes. VM types within a list with the same CPU count are treated equally.\n\nConsole\n\nTo create a cluster with secondary worker flexible VMs:\n\n1. Open the Dataproc\n [**Create a cluster on Compute Engine**](https://console.cloud.google.com/dataproc/clustersAdd)\n page in the Google Cloud console.\n\n2. The **Set up cluster** panel is selected with fields filled in with default\n values. You can change the suggested name and the cluster region, and\n make other changes. Make sure that **Any** is selected as the cluster\n **Zone** to allow\n [Dataproc autozone placement](/dataproc/docs/concepts/configuring-clusters/auto-zone)\n to choose the zone that has the best availability of the\n VM types specified in your flexible VM lists.\n\n3. Select the **Configure nodes** panel. In the **Secondary worker nodes**\n section, specify the number and preemptibility of secondary workers.\n\n - Click **Add a secondary worker** for each rank of secondary workers, specifying one or more machine types to include in each rank.\n4. After confirming and specifying cluster details in the cluster create panels,\n click **Create**.\n\ngcloud\n\nUse the\n[`gcloud dataproc clusters create`](/sdk/gcloud/reference/dataproc/clusters/create)\ncommand to add multiple `secondary-worker-machine-types` flags to specify ranked\nflexible VM lists for\n[Dataproc secondary workers](/dataproc/docs/concepts/compute/secondary-vms).\nThe default flexible VM secondary worker type is Spot, which is a preemptible type.\n\nIn the following gcloud CLI example, Dataproc attempts\nto provision secondary workers with `n2-standard-8` VMs first (rank 0). If\nn2-standard-8 machines are not available, Dataproc attempts\nto provision secondary workers with either `e2-standard-8` or `t2d-standard-8`\nVMs (rank 1). \n\n```\ngcloud dataproc clusters create CLUSTER_NAME \\\n --region=REGION \\\n --zone=\"\" \\\n --master-machine-type=n1-standard-8 \\\n --worker-machine-type=n1-standard-8 \\\n --num-workers=4 \\\n --num-secondary-workers=4 \\\n --secondary-worker-type=non-preemptible \\\n --secondary-worker-machine-types=\"type=n2-standard-8,rank=0\" \\\n --secondary-worker-machine-types=\"type=e2-standard-8,type=t2d-standard-8,rank=1\"\n```\n\nNotes:\n\n- `--zone=\"\"`: The Flexible VM feature requires\n [Dataproc autozone placement](/dataproc/docs/concepts/configuring-clusters/auto-zone) to\n allow Dataproc to choose the zone that has your\n VM types available for use. Passing an empty value\n (\"\") to the `--zone` flag overrides any zone selection specified in your default\n `gcloud config list`.\n\n- Dataproc generates component `role` properties based on machine\n cores and memory. You can override these system-generated properties with the\n `--properties` flag, using the following syntax:\n\n ```\n --properties=\"ROLE:MACHINE_TYPE:COMPONENT_PREFIX:COMPONENT_PROPERTY=VALUE\"\n ```\n\n Only the `secondary_worker` role is the only supported role.\n\n In the following example, the `--properties` flag changes the number of cores\n of `e2-standard-8` machines assigned to secondary worker nodes from `8` to `6`: \n\n ```\n --properties=\"secondary_worker:e2-standard-8:yarn:yarn.nodemanager.resource.cpu-vcores=6\"\n ```\n\nAPI\n\nUse the [`instanceFlexibilityPolicy.instanceSelectionList`](/dataproc/docs/reference/rest/v1/InstanceGroupConfig#InstanceFlexibilityPolicy.FIELDS.instance_selection_list)\nas part of a Dataproc API\n[`clusters.create`](/dataproc/docs/reference/rest/v1/projects.regions.clusters/create)\nrequest to specify a ranked list of [machineTypes]() for secondary workers.\n\nExample:\n\nThe following JSON snippet from a Dataproc `clusters.create`\n[request body](/dataproc/docs/reference/rest/v1/projects.regions.clusters/create#request-body)\nspecifies secondary workers machine types for rank 0 and rank 1. \n\n```\n\"config\": {\n \"secondaryWorkerConfig\": {\n \"instanceFlexibilityPolicy\": {\n \"instanceSelectionList\": [\n {\n \"machineTypes\": [\n \"n1-standard-4\",\n \"n2-standard-4\"\n ],\n \"rank\": 0\n },\n {\n \"machineTypes\": [\n \"e2-standard-4\",\n \"n2d-standard-4\"\n ],\n \"rank\": 1\n }\n ]\n }\n }\n}\n```\n\n**Use cluster properties to customize component roles:** Dataproc\ngenerates component `role` properties based on VM cores and memory.\nYou can override these system-generated properties by adding\n[`SoftwareConfig.properties`](/static/dataproc/docs/reference/rest/v1/ClusterConfig#SoftwareConfig.FIELDS.properties)\nto your `clusters.create` request, using the following \u003cvar translate=\"no\"\u003ekey\u003c/var\u003e`=`\u003cvar translate=\"no\"\u003evalue\u003c/var\u003e syntax: \n\n```\nROLE:MACHINE_TYPE:COMPONENT_PREFIX:COMPONENT_PROPERTY=VALUE\n```\n\nOnly the `secondary_worker` role is the only supported role.\n\nIn the following example, the `properties` field changes the number of cores\nassigned to the secondary worker node of an `e2-standard-8` VM from `8` to `6`:\n\n\u003cbr /\u003e\n\n```\n\"secondary_worker:e2-standard-8:yarn:yarn.nodemanager.resource.cpu-vcores=6\"\n \n```\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e"]]