Exécuter des transformations dans BigQuery

Cette page explique comment exécuter des transformations vers BigQuery au lieu de Spark dans Cloud Data Fusion.

Pour en savoir plus, consultez les Présentation du pushdown de transformation

Avant de commencer

Le pushdown de transformation est disponible à partir de la version 6.5.0. Si votre pipeline s'exécute dans un environnement antérieur, vous pouvez mettre à niveau votre instance vers la dernière version.

Activer le pushdown de transformation sur votre pipeline

Console

Pour activer le pushdown de transformation sur un pipeline déployé, procédez comme suit :

  1. Accédez à votre instance:

    1. Dans la console Google Cloud, accédez à la page Cloud Data Fusion.

    2. Pour ouvrir l'instance dans Cloud Data Fusion Studio, Cliquez sur Instances, puis sur Afficher l'instance.

      Accéder à la page "Instances"

  2. Cliquez sur Menu > Liste.

    L'onglet du pipeline déployé s'ouvre.

  3. Cliquez sur le pipeline déployé souhaité pour l'ouvrir dans le pipeline Pipeline. Google Marketing Platform Studio.

  4. Cliquez sur Configurer > Déroulement de la transformation.

    Activez le pushdown de transformation.

  5. Cliquez sur Enable Transformation Pushdown (Activer le pushdown de transformation).

  6. Dans le champ Ensemble de données, saisissez un nom pour l'ensemble de données BigQuery.

    Facultatif: Pour utiliser une macro, cliquez sur M. Pour en savoir plus, consultez Ensembles de données :

  7. Facultatif : configurez les options, si nécessaire.

  8. Cliquez sur Enregistrer.

Configurations facultatives

.
Propriété Compatible avec les macros Versions Cloud Data Fusion compatibles Description
Utiliser la connexion Non 6.7.0 et versions ultérieures Indique si vous souhaitez utiliser une connexion existante.
Connexion Oui 6.7.0 et versions ultérieures le nom de la connexion. Cette connexion fournit des données informations de compte de service.
Facultatif: utilisez la macro ${conn(connection_name)}.
ID du projet de l'ensemble de données Oui 6.5.0 Si l'ensemble de données se trouve dans un projet différent de celui où Exécution du job BigQuery, saisissez l'ID du projet de l'ensemble de données. Si aucune valeur n'est fournie, l'ID de projet dans lequel la tâche s'exécute est utilisé par défaut.
ID du projet Oui 6.5.0 ID de projet Google Cloud.
Type de compte de service Oui 6.5.0 Sélectionnez l'une des options suivantes :
  • Chemin d'accès au fichier : chemin d'accès au fichier du compte de service.
  • JSON: le contenu JSON du compte de service.
La valeur par défaut est JSON.
Chemin d'accès au fichier du compte de service Oui 6.5.0 Chemin d'accès au système de fichiers local de la clé de compte de service utilisée pour l'autorisation. Elle est définie sur auto-detect lors de l'exécution sur un cluster Dataproc. Lors de l'exécution sur d'autres clusters, le fichier doit être présent sur tous les nœuds du cluster. La valeur par défaut est auto-detect.
Fichier JSON du compte de service Oui 6.5.0 Contenu du fichier JSON du compte de service.
Nom de bucket temporaire Oui 6.5.0 Bucket Cloud Storage qui stocke les données temporaires. S'il n'existe pas, il est automatiquement créé, mais il n'est pas automatiquement supprimé. Les données Cloud Storage sont supprimées après leur chargement dans BigQuery. Si cette valeur n'est pas fournie, un bucket unique est créé, puis supprimé une fois l'exécution du pipeline terminée. Le compte de service doit être autorisé à créer des buckets dans le projet configuré.
Emplacement Oui 6.5.0 Emplacement où l'ensemble de données BigQuery est créé. Cette valeur est ignorée si l'ensemble de données ou le bucket temporaire existe. L'emplacement multirégional US est l'emplacement par défaut.
Nom de la clé de chiffrement Oui 6.5.1/0.18.1 Le clé de chiffrement gérée par le client (CMEK) qui chiffre les données dans n'importe quel bucket, ensemble de données ou table créé par le plug-in. Si le bucket, l'ensemble de données ou la table existe déjà, cette valeur est ignorée.
Conserver les tables BigQuery après la fin Oui 6.5.0 Conserver ou non tous les tableaux temporaires BigQuery créés pendant l'exécution du pipeline à des fins de débogage à des fins de validation. La valeur par défaut est Non.
Valeur TTL de la table temporaire (en heures) Oui 6.5.0 Définissez la valeur TTL de la table pour les tables temporaires BigQuery, en heures. Il est utile comme solution de sécurité en cas d'annulation du pipeline et d'interruption du processus de nettoyage (par exemple, si le cluster d'exécution est arrêté soudainement). La définition de cette valeur sur 0 désactive la valeur TTL de la table. La valeur par défaut est 72 (3 jours)
Priorité du job Oui 6.5.0 Priorité utilisée pour exécuter des tâches BigQuery. Sélectionner l'une des options suivantes:
  1. Batch: un job par lot est mis en file d'attente et démarré en tant que dès que des ressources inactives sont disponibles, généralement en quelques secondes minutes. Si la tâche n'est pas démarrée dans les trois heures, sa priorité est définie sur interactive.
  2. Interactif : une tâche interactive est exécutée dès que possible et est comptabilisée dans la limite de débit simultané et la limite de débit quotidien.
La valeur par défaut est Batch.
Étapes pour forcer le déroulement Oui 6.7.0 Étapes compatibles à exécuter en permanence dans BigQuery. Chaque nom de phase doit figurer sur une ligne distincte.
Étapes pour lesquelles ignorer le pushdown Oui 6.7.0 Étapes compatibles à ne jamais exécuter dans BigQuery. Chaque nom de scène doit figurer sur une ligne distincte.
Utiliser l'API BigQuery Storage Read Oui 6.7.0 Indique si vous devez utiliser l'API BigQuery Storage Read lors de l'extraction d'enregistrements de BigQuery pendant l'exécution du pipeline. Cette option peut améliorer les performances du pushdown de transformation, mais occasionne frais supplémentaires. Pour cela, Scala 2.12 doit être installé dans le environnement d'exécution.

Surveiller les variations de performances dans les journaux

Les journaux d'exécution du pipeline incluent des messages qui montrent les requêtes SQL exécutées dans BigQuery. Vous pouvez surveiller les étapes du pipeline qui sont transmises à BigQuery.

L'exemple suivant montre les entrées de journal au début de l'exécution du pipeline. La Les journaux indiquent que les opérations JOIN de votre pipeline ont été transférées vers le bas. BigQuery pour l'exécution:

  INFO  [Driver:i.c.p.g.b.s.BigQuerySQLEngine@190] - Validating join for stage 'Users' can be executed on BigQuery: true
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@131] - Starting push for dataset 'UserProfile'
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@131] - Starting push for dataset 'UserDetails'
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@292] - Starting join for dataset 'Users'
  INFO  [Driver:i.c.p.g.b.s.BigQuerySQLEngine@190] - Validating join for stage 'UserPurchases' can be executed on BigQuery: true
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@131] - Starting push for dataset 'Purchases'
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@292] - Starting join for dataset 'UserPurchases'
  INFO  [Driver:i.c.p.g.b.s.BigQuerySQLEngine@190] - Validating join for stage 'MostPopularNames' can be executed on BigQuery: true
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@131] - Starting push for dataset 'FirstNameCounts'
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@292] - Starting join for dataset 'MostPopularNames'
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@193] - Starting pull for dataset 'MostPopularNames'

L'exemple suivant montre les noms de tables qui seront attribués pour chacune des les ensembles de données impliqués dans l'exécution du pushdown:

  INFO  [batch-sql-engine-adapter:i.c.p.g.b.s.BigQuerySQLEngine@145] - Executing Push operation for dataset Purchases stored in table <TABLE_ID>
  INFO  [batch-sql-engine-adapter:i.c.p.g.b.s.BigQuerySQLEngine@145] - Executing Push operation for dataset UserDetails stored in table <TABLE_ID>
  INFO  [batch-sql-engine-adapter:i.c.p.g.b.s.BigQuerySQLEngine@145] - Executing Push operation for dataset FirstNameCounts stored in table <TABLE_ID>
  INFO  [batch-sql-engine-adapter:i.c.p.g.b.s.BigQuerySQLEngine@145] - Executing Push operation for dataset UserProfile stored in table <TABLE_ID>

Au fur et à mesure que l'exécution se poursuit, les journaux indiquent l'achèvement des étapes d'envoi et et enfin l'exécution des opérations JOIN. Exemple :

  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@133] - Completed push for dataset 'UserProfile'
  DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@133] - Completed push for dataset 'UserDetails'
  DEBUG [batch-sql-engine-adapter:i.c.p.g.b.s.BigQuerySQLEngine@235] - Executing join operation for dataset Users
  INFO  [batch-sql-engine-adapter:i.c.p.g.b.s.BigQueryJoinDataset@118] - Creating table `<TABLE_ID>` using job: <JOB_ID> with SQL statement: SELECT `UserDetails`.id AS `id` , `UserDetails`.first_name AS `first_name` , `UserDetails`.last_name AS `last_name` , `UserDetails`.email AS `email` , `UserProfile`.phone AS `phone` , `UserProfile`.profession AS `profession` , `UserProfile`.age AS `age` , `UserProfile`.address AS `address` , `UserProfile`.score AS `score` FROM `your_project.your_dataset.<DATASET_ID>` AS `UserProfile` LEFT JOIN `your_project.your_dataset.<DATASET_ID>` AS `UserDetails` ON `UserProfile`.id = `UserDetails`.id
  INFO  [batch-sql-engine-adapter:i.c.p.g.b.s.BigQueryJoinDataset@151] - Created BigQuery table `<TABLE_ID>
  INFO  [batch-sql-engine-adapter:i.c.p.g.b.s.BigQuerySQLEngine@245] - Executed join operation for dataset Users

Une fois toutes les étapes terminées, un message indique que l'opération Pull a terminé terminée. Cela indique que le processus d'exportation BigQuery a été déclenché et que les enregistrements commencent à être lus dans le pipeline après le début de cette tâche d'exportation. Exemple :

DEBUG [batch-sql-engine-adapter:i.c.c.e.s.b.BatchSQLEngineAdapter@196] - Completed pull for dataset 'MostPopularNames'

Si l'exécution du pipeline rencontre des erreurs, celles-ci sont décrites dans les journaux.

Pour en savoir plus sur l'exécution de la tâche JOIN BigQuery telles que l'utilisation des ressources, la durée d'exécution et les causes d'erreur, peuvent afficher les données de la tâche BigQuery à l'aide de l'ID de tâche, qui apparaît dans les journaux du job.

Examiner les métriques du pipeline

Pour en savoir plus sur les métriques fournies par Cloud Data Fusion pour la partie du pipeline exécutée dans BigQuery, consultez la section Métriques du pipeline de pushdown BigQuery.

Étape suivante