Supervisa el estado y el rendimiento del entorno con métricas clave en el panel de supervisión

Cloud Composer 1 | Cloud Composer 2 | Cloud Composer 3

En esta página, se describe cómo supervisar el estado general y el rendimiento del entorno de Cloud Composer con métricas clave en el panel de supervisión.

Introducción

En este instructivo, se enfocan las métricas de supervisión clave de Cloud Composer que pueden proporcionar una buena descripción general del estado y el rendimiento a nivel del entorno.

Cloud Composer ofrece varias métricas que describen el estado general del entorno. Los lineamientos de supervisión de este instructivo se basan en las métricas expuestas en el panel de Monitoring de tu entorno de Cloud Composer.

En este instructivo, aprenderás sobre las métricas clave que funcionan como los principales indicadores de problemas con el rendimiento y el estado del entorno, como así como los lineamientos para interpretar cada métrica en medidas correctivas mantener el entorno saludable. También configurarás reglas de alertas para cada métrica, ejecutarás el DAG de ejemplo y usarás estas métricas y alertas para optimizar el rendimiento de tu entorno.

Objetivos

Costos

En este instructivo, se usan los siguientes componentes facturables de Google Cloud:

Cuando finalices este instructivo, puedes borrar los recursos creados para evitar que se te siga facturando. Para obtener más información, consulta Cómo realizar una limpieza.

Antes de comenzar

En esta sección, se describen las acciones que debes realizar antes de comenzar el instructivo.

Crea y configura un proyecto

Para este instructivo, necesitas un proyecto de Google Cloud. Configura el proyecto de la siguiente manera:

  1. En la consola de Google Cloud, selecciona o crea un proyecto:

    Ir al Selector de proyectos

  2. Asegúrate de tener habilitada la facturación para tu proyecto. Obtén información para verificar si la facturación está habilitada en un proyecto.

  3. Asegúrate de que el usuario de tu proyecto de Google Cloud tenga los siguientes roles para crear los recursos necesarios:

    • Administrador de objetos de almacenamiento y entorno (roles/composer.environmentAndStorageObjectAdmin)
    • Administrador de Compute (roles/compute.admin)
    • Editor de Monitoring (roles/monitoring.editor)

Habilita las API para tu proyecto.

Enable the Cloud Composer API.

Enable the API

Crea tu entorno de Cloud Composer

Crea un entorno de Cloud Composer 2.

Como parte de este procedimiento, otorgas el rol de Extensión del agente de servicio de la API de Cloud Composer v2 (roles/composer.ServiceAgentV2Ext) a la cuenta del agente de servicio de Composer. Cloud Composer usa esta cuenta para realizar operaciones en tu proyecto de Google Cloud.

Explora las métricas clave del estado y el rendimiento a nivel del entorno

En este instructivo, se enfocan las métricas clave que pueden brindarte una buena descripción general del estado y el rendimiento general de tu entorno.

El panel de Monitoring en La consola de Google Cloud contiene una variedad de métricas y gráficos que permiten supervisar tendencias en tu entorno e identificar problemas con Airflow componentes y recursos de Cloud Composer.

Cada entorno de Cloud Composer tiene su propio Monitoring o un panel dinámico más robusto.

Familiarízate con las métricas clave que se muestran a continuación y ubica cada una de ellas en el panel de Monitoring:

  1. En la consola de Google Cloud, ve a la página Entornos.

    Ir a Entornos

  2. En la lista de entornos, haz clic en el nombre de tu entorno. Se abrirá la página Detalles del entorno.

  3. Ve a la pestaña Monitoring.

  4. Selecciona la sección Descripción general, localiza el elemento Descripción general del entorno en el panel y observar la Estado del entorno (DAG de supervisión de Airflow).

    • En este cronograma se muestra el estado de Cloud Composer en un entorno de nube. El color verde de la barra de estado del entorno indica que el entorno está en buen estado, mientras que el estado del entorno no en buen estado se indica con el color rojo.

    • Cada cierto tiempo, Cloud Composer ejecuta un DAG de estado activo llamado airflow_monitoring. Si la ejecución del DAG de funcionamiento finaliza correctamente, el el estado es True. Si la ejecución del DAG en funcionamiento falla (por ejemplo, debido a la expulsión del Pod, la finalización del proceso externo o el mantenimiento). el estado es False.

  5. Selecciona la sección Base de datos SQL y busca el Estado de la base de datos. del panel y observa la métrica Estado de la base de datos.

    • Este cronograma muestra el estado de la conexión a la instancia de Cloud SQL de tu entorno. La base de datos verde la barra de estado indica que la conectividad, mientras que las fallas de conexión se indicado en color rojo.

    • El pod de supervisión de Airflow hace ping a la base de datos de forma periódica y informa el estado como True si se puede establecer una conexión, o como False si no.

  6. En el elemento Estado de la base de datos, observa las métricas Uso de CPU de la base de datos y Uso de memoria de la base de datos.

    • El gráfico de uso de CPU de la base de datos indica el uso de núcleos de CPU por parte de instancias de base de datos de Cloud SQL de tu entorno en comparación límite total de CPU disponible para la base de datos.

    • El gráfico de uso de memoria de la base de datos indica el uso de memoria que hacen las instancias de base de datos de Cloud SQL de tu entorno en comparación con el límite total de memoria disponible de la base de datos.

  7. Selecciona la sección Programadores y busca la Señal de monitoreo de funcionamiento del programador. del panel y observa la métrica Señal de monitoreo de funcionamiento del programador.

    • En esta línea de tiempo, se muestra estado del programador de Airflow. Verifica las áreas rojas para identificar los problemas del programador de Airflow. Si tu entorno tiene más de un programador, el estado del indicador de actividad es saludable, siempre y cuando al menos uno de los programadores responda.

    • Se considera que el programador está en mal estado si se recibió la última señal de monitoreo de funcionamiento más de 30 segundos (valor predeterminado) antes de la hora actual.

  8. Selecciona la sección DAG statistics, busca el elemento Zombie tasks killed en el panel y observa la métrica Zombie tasks killed.

    • Este gráfico indica la cantidad de tareas zombi que se destruyeron en un pequeño durante ese período. Las tareas zombi suelen deberse al cierre externo de los procesos de Airflow (como cuando se cierra el proceso de una tarea).

    • El programador de Airflow finaliza las tareas zombi de forma periódica, lo que se refleja en este gráfico.

  9. Selecciona la sección Workers y ubica la sección Worker container restarts. del panel. Luego, observa la métrica Reinicios de contenedor de trabajadores.

    • Un gráfico indica la cantidad total de reinicios de los contenedores de trabajo individuales. Demasiados reinicios del contenedor pueden afectar la disponibilidad de tu servicio u otros servicios downstream que lo usen como dependencia.

Obtén comparativas y posibles acciones correctivas para las métricas clave

En la siguiente lista, se describen los valores comparativos que pueden indicar problemas y se proporcionan medidas correctivas que puedes tomar para abordar estos problemas.

  • Estado del entorno (DAG de supervisión de Airflow)

    • Tasa de éxito inferior al 90% en un período de 4 horas

    • Las fallas pueden significar expulsiones de Pods o cierres de trabajadores debido a que el entorno está sobrecargado o funciona mal. Áreas rojas en el entorno la línea de tiempo de salud generalmente se correlaciona con áreas rojas en las otras barras de salud. de los componentes individuales del entorno. Identifica la causa raíz mediante revisando otras métricas en el panel de Monitoring.

  • Estado de la base de datos

    • Menos del 95% de tasa de éxito en un período de 4 horas

    • Las fallas indican que hay problemas con la conectividad a la base de datos de Airflow, lo que podría deberse a una falla o un tiempo de inactividad de la base de datos porque está sobrecargada (por ejemplo, debido a un alto uso de la CPU o la memoria, o una latencia más alta mientras se conecta a la base de datos). Estos síntomas con mayor frecuencia son causados por DAG subóptimos, como cuando los DAG usan muchas variables de entorno o Airflow definidas globalmente. Para identificar la causa raíz, revisa las métricas de uso de recursos de la base de datos de SQL. También puedes inspeccionar los registros del programador en busca de errores relacionados con la conectividad de la base de datos.

  • Uso de CPU y memoria de la base de datos

    • Más del 80% de uso promedio de CPU o memoria en un período de 12 horas

    • Es posible que la base de datos esté sobrecargada. Analiza la correlación entre las ejecuciones de tu DAG y los aumentos repentinos en el uso de la CPU o la memoria de la base de datos.

  • Señal de monitoreo de funcionamiento del programador

    • Menos del 90% de tasa de éxito en un período de 4 horas

    • Asignar más recursos al programador o aumentar la cantidad de programadores de 1 a 2 (recomendado).

  • Procesos zombi eliminados

    • Más de una tarea zombi por 24 horas

    • El motivo más común de estas tareas es la escasez de CPU o memoria. recursos en el clúster de tu entorno. Revisa el uso de recursos de los trabajadores gráficos y asignar más recursos a tus trabajadores, o aumentar el tiempo de espera de las tareas zombi para que el programador espere más tiempo antes de considerar que una tarea es un peligro.

  • Reinicios del contenedor de trabajadores

Crea canales de notificaciones

Sigue las instrucciones que se describen en Cómo crear un canal de notificaciones para crear un canal de notificaciones por correo electrónico.

Para obtener más información sobre los canales de notificaciones, consulta Administra canales de notificaciones.

Crea políticas de alertas

Crea políticas de alertas basadas en las comparativas proporcionadas en las secciones anteriores de este instructivo para supervisar de forma continua los valores de las métricas y recibir notificaciones cuando esas métricas infrinjan una condición.

Console

Para configurar alertas para cada métrica que se presenta en el panel de supervisión, haz clic en el ícono de campana en la esquina del elemento correspondiente:

Crea una alerta para una métrica que se muestra en el panel de supervisión
Figura 1: Crea una alerta para una métrica que se muestra en el panel de supervisión (haz clic para ampliar)
  1. Busca cada métrica que quieras supervisar en el panel de Monitoring y haz clic en el ícono de campana en la esquina del elemento de la métrica. El Se abrirá la página Crear política de alertas.

  2. En la sección Transforma los datos, haz lo siguiente:

    1. Configura la sección Dentro de cada serie temporal como se describe en la configuración de las políticas de alertas para la métrica.

    2. Haz clic en Siguiente y, luego, configura la sección Configurar activador de alertas como se describe en la configuración de las políticas de alertas para la métrica.

  3. Haz clic en Siguiente.

  4. Configura las notificaciones. Expande el menú Canales de notificaciones y selecciona los canales de notificaciones que creaste en el paso anterior.

  5. Haz clic en Aceptar.

  6. En la sección Nombre de la política de alertas, completa el campo Nombre de la política de alertas. . Usa un nombre descriptivo para cada una de las métricas. Usa el comando "Name the política de alertas" de salida, como se describe en la configuración de las políticas de alertas para la métrica.

  7. Haz clic en Siguiente.

  8. Revisa la política de alertas y haz clic en Crear política.

Métrica de estado del entorno (DAG de supervisión de Airflow): Parámetros de configuración de la política de alertas

  • Nombre de la métrica: Entorno de Cloud Composer: en buen estado
  • API: composer.googleapis.com/environment/healthy
  • Filtros:

    environment_name = [ENVIRONMENT_NAME]
    location = [CLUSTER_LOCATION]
    
  • Transformar datos > Dentro de cada serie temporal:

    • Ventana móvil: Personalizada
    • Valor personalizado: 4
    • Unidades personalizadas: horas
    • Función analítica progresiva: fracción verdadera
  • Configura el activador de alertas:

    • Tipos de condiciones: Umbral
    • Activador de alertas: Cualquier serie temporal es una infracción
    • Posición del umbral: Por debajo del umbral
    • Valor del umbral: 90
    • Nombre de la condición: Estado del entorno
  • Configura las notificaciones y finaliza la alerta:

    • Asigna el nombre de la política de alertas: Estado del entorno de Airflow

Métrica de estado de la base de datos: parámetros de configuración de la política de alertas

  • Nombre de la métrica: Entorno de Cloud Composer: Base de datos en buen estado
  • API: composer.googleapis.com/environment/database_health
  • Filtros:

    environment_name = [ENVIRONMENT_NAME]
    location = [CLUSTER_LOCATION]
    
  • Transforma los datos > Dentro de cada serie temporal:

    • Ventana móvil: Personalizada
    • Valor personalizado: 4
    • Unidades personalizadas: horas
    • Función analítica progresiva: fracción verdadera
  • Configura el activador de alertas:

    • Tipos de condiciones: Umbral
    • Activador de alertas: Cualquier serie temporal es una infracción
    • Posición del umbral: Por debajo del umbral
    • Valor del umbral: 95
    • Nombre de la condición: Estado de la base de datos
  • Configura las notificaciones y finaliza la alerta:

    • Asigna un nombre a la política de alertas: Estado de la base de datos de Airflow

Métrica de uso de CPU de la base de datos: parámetros de configuración de la política de alertas

  • Nombre de la métrica: Entorno de Cloud Composer - Uso de CPU de la base de datos
  • API: composer.googleapis.com/environment/database/cpu/utilization
  • Filtros:

    environment_name = [ENVIRONMENT_NAME]
    location = [CLUSTER_LOCATION]
    
  • Transforma los datos > Dentro de cada serie temporal:

    • Ventana móvil: Personalizada
    • Valor personalizado: 12
    • Unidades personalizadas: horas
    • Función de ventana progresiva: media
  • Configura el activador de alertas:

    • Tipos de condiciones: Umbral
    • Activador de la alerta: Cualquier serie temporal es una infracción
    • Posición del umbral: Por encima del umbral
    • Valor del umbral: 80
    • Nombre de la condición: Condición de uso de CPU de la base de datos
  • Configura las notificaciones y finaliza la alerta:

    • Asigna el nombre a la política de alertas: Uso de CPU de la base de datos de Airflow

Métrica de uso de CPU de la base de datos: parámetros de configuración de la política de alertas

  • Nombre de la métrica: Entorno de Cloud Composer: Uso de memoria de la base de datos
  • API: composer.googleapis.com/environment/database/memory/utilization
  • Filtros:

    environment_name = [ENVIRONMENT_NAME]
    location = [CLUSTER_LOCATION]
    
  • Transformar datos > Dentro de cada serie temporal:

    • Ventana progresiva: Personalizado
    • Valor personalizado: 12
    • Unidades personalizadas: horas
    • Función de ventana progresiva: media
  • Configura el activador de alertas:

    • Tipos de condiciones: Umbral
    • Activador de la alerta: Cualquier serie temporal es una infracción
    • Posición del umbral: Por encima del umbral
    • Valor del umbral: 80
    • Nombre de la condición: Condición de uso de memoria de la base de datos
  • Configura las notificaciones y finaliza la alerta:

    • Asigna un nombre a la política de alertas: Uso de memoria de la base de datos de Airflow

Métrica de señales de monitoreo del programador: configuración de la política de alertas

  • Nombre de la métrica: Entorno de Cloud Composer: señales de monitoreo de funcionamiento del programador
  • API: composer.googleapis.com/environment/scheduler_heartbeat_count
  • Filtros:

    environment_name = [ENVIRONMENT_NAME]
    location = [CLUSTER_LOCATION]
    
  • Transforma los datos > Dentro de cada serie temporal:

    • Ventana progresiva: Personalizado
    • Valor personalizado: 4
    • Unidades personalizadas: horas
    • Función de ventana progresiva: count
  • Configura el activador de alertas:

    • Tipos de condiciones: Umbral
    • Activador de alertas: Cualquier serie temporal es una infracción
    • Posición del umbral: Por debajo del umbral
    • Valor del umbral: 216

      1. Para obtener este número, ejecuta una consulta que agregue el valor _scheduler_heartbeat_count_mean en el Editor de consultas del Explorador de métricas.
    • Nombre de la condición: Condición de la señal de monitoreo de funcionamiento del programador

  • Configura las notificaciones y finaliza la alerta:

    • Asigna un nombre a la política de alertas: Señal de monitoreo de funcionamiento de Airflow Scheduler

Métrica de procesos zombi eliminados: Parámetros de configuración de la política de alertas

  • Nombre de la métrica: Entorno de Cloud Composer: Procesos zombi eliminados
  • API: composer.googleapis.com/environment/zombie_task_killed_count
  • Filtros:

    environment_name = [ENVIRONMENT_NAME]
    location = [CLUSTER_LOCATION]
    
  • Transforma los datos > Dentro de cada serie temporal:

    • Período móvil: 1 día
    • Función analítica progresiva: sum
  • Configura el activador de alertas:

    • Tipos de condiciones: Umbral
    • Activador de la alerta: Cualquier serie temporal es una infracción
    • Posición del umbral: Por encima del umbral
    • Valor del umbral: 1
    • Nombre de la condición: Condición de tareas zombi
  • Configura las notificaciones y finaliza la alerta:

    • Asigna el nombre a la política de alertas: Tareas zombi de Airflow

Métrica de reinicios del contenedor de trabajadores: Parámetros de configuración de la política de alertas

  • Nombre de la métrica: Entorno de Cloud Composer: Procesos zombi eliminados
  • API: composer.googleapis.com/environment/zombie_task_killed_count
  • Filtros:

    environment_name = [ENVIRONMENT_NAME]
    location = [CLUSTER_LOCATION]
    
  • Transformar datos > Dentro de cada serie temporal:

    • Ventana móvil: 1 día
    • Función analítica progresiva: sum
  • Configura el activador de alertas:

    • Tipos de condiciones: Umbral
    • Activador de la alerta: Cualquier serie temporal es una infracción
    • Posición del umbral: Por encima del umbral
    • Valor del umbral: 1
    • Nombre de la condición: Condición de tareas zombi
  • Configura las notificaciones y finaliza la alerta:

    • Asigna un nombre a la política de alertas: Airflow Zombie Tasks

Terraform

Ejecuta una secuencia de comandos de Terraform que cree un canal de notificación por correo electrónico y cargue políticas de alertas para las métricas clave que se proporcionan en este instructivo según sus respectivos comparativas:

  1. Guarda el archivo de Terraform de ejemplo en tu computadora local.
  2. Reemplaza lo siguiente:

    • PROJECT_ID: Es el ID del proyecto. Por ejemplo, example-project.
    • EMAIL_ADDRESS: La dirección de correo electrónico a la que se debe notificar en caso de que se active una alerta.
    • ENVIRONMENT_NAME: Es el nombre de tu entorno de Cloud Composer. Por ejemplo, example-composer-environment
    • CLUSTER_NAME: Es el nombre del clúster de tu entorno que se puede encontrar en Configuración del entorno > Recursos > GKE clúster en la consola de Google Cloud.
resource "google_monitoring_notification_channel" "basic" {
  project      = "PROJECT_ID"
  display_name = "Test Notification Channel"
  type         = "email"
  labels = {
    email_address = "EMAIL_ADDRESS"
  }
  # force_delete = false
}

resource "google_monitoring_alert_policy" "environment_health_metric" {
  project      = "PROJECT_ID"
  display_name = "Airflow Environment Health"
  combiner     = "OR"
  notification_channels = [google_monitoring_notification_channel.basic.name] // To manually add a notification channel add it with the syntax "projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]"
  conditions {
    display_name = "Environment health condition"
    condition_threshold {
      filter     = "resource.type = \"cloud_composer_environment\" AND metric.type=\"composer.googleapis.com/environment/healthy\" AND resource.label.environment_name=\"ENVIRONMENT_NAME\""
      duration   = "60s"
      comparison = "COMPARISON_LT"
      threshold_value = 0.9
      aggregations {
        alignment_period   = "14400s"
        per_series_aligner = "ALIGN_FRACTION_TRUE"
      }
    }
  }

}

resource "google_monitoring_alert_policy" "database_health_metric" {
  project      = "PROJECT_ID"
  display_name = "Airflow Database Health"
  combiner     = "OR"
  notification_channels = [google_monitoring_notification_channel.basic.name] // To manually add a notification channel add it with the syntax "projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]"
  conditions {
    display_name = "Database health condition"
    condition_threshold {
      filter     = "resource.type = \"cloud_composer_environment\" AND metric.type=\"composer.googleapis.com/environment/database_health\" AND resource.label.environment_name=\"ENVIRONMENT_NAME\""
      duration   = "60s"
      comparison = "COMPARISON_LT"
      threshold_value = 0.95
      aggregations {
        alignment_period   = "14400s"
        per_series_aligner = "ALIGN_FRACTION_TRUE"
      }
    }
  }
}

resource "google_monitoring_alert_policy" "alert_database_cpu_usage" {
  project      = "PROJECT_ID"
  display_name = "Airflow Database CPU Usage"
  combiner     = "OR"
  notification_channels = [google_monitoring_notification_channel.basic.name] // To manually add a notification channel add it with the syntax "projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]"
  conditions {
    display_name = "Database CPU usage condition"
    condition_threshold {
      filter     = "resource.type = \"cloud_composer_environment\" AND metric.type=\"composer.googleapis.com/environment/database/cpu/utilization\" AND resource.label.environment_name=\"ENVIRONMENT_NAME\""
      duration   = "60s"
      comparison = "COMPARISON_GT"
      threshold_value = 80
      aggregations {
        alignment_period   = "43200s"
        per_series_aligner = "ALIGN_MEAN"
      }
    }
  }
}

resource "google_monitoring_alert_policy" "alert_database_memory_usage" {
  project      = "PROJECT_ID"
  display_name = "Airflow Database Memory Usage"
  combiner     = "OR"
  notification_channels = [google_monitoring_notification_channel.basic.name] // To manually add a notification channel add it with the syntax "projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]"
  conditions {
    display_name = "Database memory usage condition"
    condition_threshold {
      filter     = "resource.type = \"cloud_composer_environment\" AND metric.type=\"composer.googleapis.com/environment/database/memory/utilization\" AND resource.label.environment_name=\"ENVIRONMENT_NAME\""
      duration   = "60s"
      comparison = "COMPARISON_GT"
      threshold_value = 80
      aggregations {
        alignment_period   = "43200s"
        per_series_aligner = "ALIGN_MEAN"
      }
    }
  }
}

resource "google_monitoring_alert_policy" "alert_scheduler_heartbeat" {
  project      = "PROJECT_ID"
  display_name = "Airflow Scheduler Heartbeat"
  combiner     = "OR"
  notification_channels = [google_monitoring_notification_channel.basic.name] // To manually add a notification channel add it with the syntax "projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]"
  conditions {
    display_name = "Scheduler heartbeat condition"
    condition_threshold {
      filter     = "resource.type = \"cloud_composer_environment\" AND metric.type=\"composer.googleapis.com/environment/scheduler_heartbeat_count\" AND resource.label.environment_name=\"ENVIRONMENT_NAME\""
      duration   = "60s"
      comparison = "COMPARISON_LT"
      threshold_value = 216 // Threshold is 90% of the average for composer.googleapis.com/environment/scheduler_heartbeat_count metric in an idle environment
      aggregations {
        alignment_period   = "14400s"
        per_series_aligner = "ALIGN_COUNT"
      }
    }
  }
}

resource "google_monitoring_alert_policy" "alert_zombie_task" {
  project      = "PROJECT_ID"
  display_name = "Airflow Zombie Tasks"
  combiner     = "OR"
  notification_channels = [google_monitoring_notification_channel.basic.name] // To manually add a notification channel add it with the syntax "projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]"
  conditions {
    display_name = "Zombie tasks condition"
    condition_threshold {
      filter     = "resource.type = \"cloud_composer_environment\" AND metric.type=\"composer.googleapis.com/environment/zombie_task_killed_count\" AND  resource.label.environment_name=\"ENVIRONMENT_NAME\""
      duration   = "60s"
      comparison = "COMPARISON_GT"
      threshold_value = 1
      aggregations {
        alignment_period   = "86400s"
        per_series_aligner = "ALIGN_SUM"
      }
    }
  }
}

resource "google_monitoring_alert_policy" "alert_worker_restarts" {
  project      = "PROJECT_ID"
  display_name = "Airflow Worker Restarts"
  combiner     = "OR"
  notification_channels = [google_monitoring_notification_channel.basic.name] // To manually add a notification channel add it with the syntax "projects/[PROJECT_ID]/notificationChannels/[CHANNEL_ID]"
  conditions {
    display_name = "Worker container restarts condition"
    condition_threshold {
      filter     = "resource.type = \"k8s_container\" AND (resource.labels.cluster_name = \"CLUSTER_NAME\" AND resource.labels.container_name = monitoring.regex.full_match(\"airflow-worker|base\") AND resource.labels.pod_name = monitoring.regex.full_match(\"airflow-worker-.*|airflow-k8s-worker-.*\")) AND metric.type = \"kubernetes.io/container/restart_count\""

      duration   = "60s"
      comparison = "COMPARISON_GT"
      threshold_value = 1
      aggregations {
        alignment_period   = "86400s"
        per_series_aligner = "ALIGN_RATE"
      }
    }
  }
}

Prueba las políticas de alertas

En esta sección, se describe cómo probar las políticas de alertas creadas y cómo interpretar los resultados.

Sube un DAG de muestra

El DAG de muestra memory_consumption_dag.py que se proporciona en este instructivo imita el uso intensivo de la memoria del trabajador. El DAG contiene 4 tareas, cada una de las cuales escribe datos en una cadena de muestra y consume 380 MB de memoria. El DAG de muestra está programado para ejecutarse cada 2 minutos y comenzará a ejecutarse automáticamente una vez que lo subas a tu entorno de Composer.

Sube el siguiente DAG de muestra al entorno que creaste en los pasos anteriores:

from datetime import datetime
import sys
import time

from airflow import DAG
from airflow.operators.python import PythonOperator


def ram_function():
    data = ""
    start = time.time()
    for i in range(38):
        data += "a" * 10 * 1000**2
        time.sleep(0.2)
        print(f"{i}, {round(time.time() - start, 4)}, {sys.getsizeof(data) / (1000 ** 3)}")
    print(f"Size={sys.getsizeof(data) / (1000 ** 3)}GB")
    time.sleep(30 - (time.time() - start))
    print(f"Complete in {round(time.time() - start, 2)} seconds!")


with DAG(
    dag_id="memory_consumption_dag",
    start_date=datetime(2023, 1, 1, 1, 1, 1),
    schedule="1/2 * * * *",
    catchup=False,
) as dag:
    for i in range(4):
        PythonOperator(
            task_id=f"task_{i+1}",
            python_callable=ram_function,
            retries=0,
            dag=dag,
        )

Interpreta las alertas y las métricas en Monitoring

Espera unos 10 minutos después de que el DAG de muestra comience a ejecutarse y evalúa los resultados de la prueba:

  1. Revisa tu buzón de correo electrónico para verificar que recibiste una notificación de las alertas de Google Cloud con el asunto que comienza con [ALERT]. El contenido de este mensaje contiene los detalles del incidente de la política de alertas.

  2. Haz clic en el botón Ver incidente en la notificación por correo electrónico. Se te redireccionará al Explorador de métricas. Revisa los detalles del incidente de alerta:

    Detalles del incidente de alerta
    . Figura 2: Detalles del incidente de alerta (haz clic para ampliar)

    El gráfico de métricas de incidentes indica que las métricas que creaste superaron el umbral de 1, lo que significa que Airflow detectó y eliminó más de 1 tarea zombi.

  3. En tu entorno de Cloud Composer, ve a la pestaña Supervisión. abre la sección Estadísticas de DAG y busca las Tareas zombi eliminadas gráfico:

    Gráfico de tareas zombie
    Figura 3. Gráfico de tareas zombi (haz clic para ampliar)

    El gráfico indica que Airflow acaba de eliminar unas 20 tareas zombis en tan solo durante los primeros 10 minutos de ejecutar el DAG de muestra.

  4. Según las comparativas y las medidas correctivas, el motivo más común para tareas zombie es la falta de memoria o CPU de trabajador. Identifica la causa raíz de tareas innecesarias mediante el análisis del uso de recursos de trabajadores.

    Abre la sección Trabajadores en el panel de Supervisión y revisa las métricas de uso de CPU y memoria del trabajador:

    Métricas de uso de memoria y CPU de los trabajadores
    . Figura 4: Métricas de uso de memoria y CPU del trabajador (haz clic para ampliar)

    El gráfico Uso total de trabajadores de la CPU indica que el uso de CPU del trabajador fue por debajo del 50% del límite total disponible en todo momento, por lo que la capacidad es suficiente. El gráfico de uso de memoria Total de trabajadores muestra que ejecutar la DAG de muestra alcanzó el límite de memoria asignable, que es igual a casi el 75% del límite total de memoria que se muestra en el gráfico (GKE reserva el 25% de los primeros 4 GiB de memoria y una 100 MiB de memoria adicionales en cada nodo para manejar la expulsión del Pod).

    Puedes concluir que los trabajadores carecen de los recursos de memoria para ejecutar el DAG de muestra correctamente.

Optimiza el entorno y evalúa su rendimiento

Según el análisis del uso de recursos de los trabajadores, debes asignar más memoria a tus trabajadores para que todas las tareas del DAG tengan éxito.

  1. En tu entorno de Composer, abre la pestaña DAG y haz clic en el nombre del DAG de muestra (memory_consumption_dag) y, luego, haz clic en Pausar DAG.

  2. Asigna memoria de trabajador adicional:

    1. En la pestaña Configuración de entorno, busca la configuración de Recursos > Cargas de trabajo y haz clic en Editar.

    2. En el elemento Trabajador, aumenta el límite de Memoria. En este instructivo, usa 3.25 GB.

    3. Guarda los cambios y espera varios minutos para que se reinicie el trabajador.

  3. Abre la pestaña DAGs, haz clic en el nombre del DAG de muestra (memory_consumption_dag) y, luego, en Reanudar DAG.

Ve a Monitoring y verifica que no haya aparecidos nuevas tareas zombi después de que actualizó los límites de recursos de trabajadores:

Gráfico de tareas zombi después de cambiar el límite de memoria
Figura 5: Gráfico de tareas zombi después de cambiar el límite de memoria (haz clic para ampliar)

Resumen

En este instructivo, aprendiste sobre los estados clave de entorno y las métricas de rendimiento, cómo configurar políticas de alertas para cada métrica y cómo para interpretar cada métrica en medidas correctivas. Luego, ejecutaste un DAG de muestra, identificó la causa raíz de los problemas de estado del entorno con la ayuda de alertas y Monitoring, y optimizó su entorno asignando más memoria a tus trabajadores. Sin embargo, se recomienda optimizar tus DAG para reducir el consumo de recursos de los trabajadores en primer lugar, ya que no es posible aumentar los recursos más allá de un umbral determinado.

Limpia

Para evitar que se apliquen cargos a tu cuenta de Google Cloud por los recursos usados en este instructivo, borra el proyecto que contiene los recursos o conservarlo y borrar los recursos individuales.

Borra el proyecto

  1. En la consola de Google Cloud, ve a la página Administrar recursos.

    Ir a Administrar recursos

  2. En la lista de proyectos, elige el proyecto que quieres borrar y haz clic en Borrar.
  3. En el diálogo, escribe el ID del proyecto y, luego, haz clic en Cerrar para borrar el proyecto.

Borra los recursos individuales

Si planeas explorar varios instructivos y guías de inicio rápido, la reutilización de proyectos puede ayudarte a evitar exceder los límites de las cuotas del proyecto.

Console

  1. Borra el entorno de Cloud Composer. También borrarás el bucket del entorno durante este procedimiento.
  2. Borra cada una de las políticas de alertas que creaste en Cloud Monitoring.

Terraform

  1. Asegúrate de que tu secuencia de comandos de Terraform no contenga entradas para recursos que aún necesita tu proyecto. Por ejemplo, es posible que desees mantener algunas APIs habilitadas y los permisos de IAM asignados (si agregaste esas definiciones a tu secuencia de comandos de Terraform).
  2. Ejecuta terraform destroy.
  3. Borra el bucket del entorno de forma manual. Cloud Composer no lo borra automáticamente. Puedes hacerlo desde la consola de Google Cloud o Google Cloud CLI.

¿Qué sigue?