Attivare risultati di grandi dimensioni

La query attiva set di risultati di grandi dimensioni utilizzando SQL precedente.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Go.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// queryLegacyLargeResults demonstrates issuing a legacy SQL query and writing a large result set
// into a destination table.
func queryLegacyLargeResults(w io.Writer, projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "destinationdataset"
	// tableID := "destinationtable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	q := client.Query(
		"SELECT corpus FROM [bigquery-public-data:samples.shakespeare] GROUP BY corpus;")
	q.UseLegacySQL = true
	q.AllowLargeResults = true
	q.QueryConfig.Dst = client.Dataset(datasetID).Table(tableID)
	// Run the query and process the returned row iterator.
	it, err := q.Read(ctx)
	if err != nil {
		return fmt.Errorf("query.Read(): %w", err)
	}
	for {
		var row []bigquery.Value
		err := it.Next(&row)
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintln(w, row)
	}
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Java.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableResult;

// Sample to run query with large results and save the results to a table.
public class QueryLargeResults {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String destinationDataset = "MY_DESTINATION_DATASET_NAME";
    String destinationTable = "MY_DESTINATION_TABLE_NAME";
    String query = "SELECT corpus FROM [bigquery-public-data:samples.shakespeare] GROUP BY corpus;";
    queryLargeResults(destinationDataset, destinationTable, query);
  }

  public static void queryLargeResults(
      String destinationDataset, String destinationTable, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      QueryJobConfiguration queryConfig =
          // To use legacy SQL syntax, set useLegacySql to true.
          QueryJobConfiguration.newBuilder(query)
              .setUseLegacySql(true)
              // Save the results of the query to a permanent table.
              .setDestinationTable(TableId.of(destinationDataset, destinationTable))
              // Allow results larger than the maximum response size.
              // If true, a destination table must be set.
              .setAllowLargeResults(true)
              .build();

      TableResult results = bigquery.query(queryConfig);

      results
          .iterateAll()
          .forEach(row -> row.forEach(val -> System.out.printf("%s,", val.toString())));

      System.out.println("Query large results performed successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Query not performed \n" + e.toString());
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Node.js.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryLegacyLargeResults() {
  // Query enables large result sets.

  /**
   * TODO(developer): Uncomment the following lines before running the sample
   */
  // const projectId = "my_project"
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  const query =
    'SELECT word FROM [bigquery-public-data:samples.shakespeare] LIMIT 10;';

  // For all options, see https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/query
  const options = {
    query: query,
    // Location must match that of the dataset(s) referenced
    // in the query and of the destination table.
    useLegacySql: true,
    allowLargeResult: true,
    destinationTable: {
      projectId: projectId,
      datasetId: datasetId,
      tableId: tableId,
    },
  };

  const [job] = await bigquery.createQueryJob(options);
  console.log(`Job ${job.id} started.`);

  // Wait for the query to finish
  const [rows] = await job.getQueryResults();

  // Print the results
  console.log('Rows:');
  rows.forEach(row => console.log(row));
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di BigQuery per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API BigQuery Python.

Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the destination table.
# table_id = "your-project.your_dataset.your_table_name"

# Set the destination table and use_legacy_sql to True to use
# legacy SQL syntax.
job_config = bigquery.QueryJobConfig(
    allow_large_results=True, destination=table_id, use_legacy_sql=True
)

sql = """
    SELECT corpus
    FROM [bigquery-public-data:samples.shakespeare]
    GROUP BY corpus;
"""

# Start the query, passing in the extra configuration.
client.query_and_wait(
    sql, job_config=job_config
)  # Make an API request and wait for the query to finish.

print("Query results loaded to the table {}".format(table_id))

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .