Cargar un archivo Parquet

Carga un archivo Parquet desde Cloud Storage en una tabla nueva.

Páginas de documentación que incluyen esta muestra de código

Para ver la muestra de código usada en contexto, consulta la siguiente documentación:

Muestra de código

Comienza a usarlo

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de Go de BigQuery.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importParquet demonstrates loading Apache Parquet data from Cloud Storage into a table.
func importParquet(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.parquet")
	gcsRef.SourceFormat = bigquery.Parquet
	gcsRef.AutoDetect = true
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.TableId;
import java.math.BigInteger;

public class LoadParquet {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.parquet";
    String tableName = "us_states";
    loadParquet(datasetName, tableName, sourceUri);
  }

  public static void loadParquet(String datasetName, String tableName, String sourceUri) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      LoadJobConfiguration configuration =
          LoadJobConfiguration.builder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.parquet())
              .build();

      // For more information on Job see:
      // https://googleapis.dev/java/google-cloud-clients/latest/index.html?com/google/cloud/bigquery/package-summary.html
      // Load the table
      Job job = bigquery.create(JobInfo.of(configuration));

      // Blocks until this load table job completes its execution, either failing or succeeding.
      Job completedJob = job.waitFor();
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to load the table due to an error: \n"
                + job.getStatus().getError());
        return;
      }

      // Check number of rows loaded into the table
      BigInteger numRows = bigquery.getTable(tableId).getNumRows();
      System.out.printf("Loaded %d rows. \n", numRows);

      System.out.println("GCS parquet loaded successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("GCS Parquet was not loaded. \n" + e.toString());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la Documentación de referencia de la API de Node.js de BigQuery.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the Parquet file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.parquet
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.parquet';

async function loadTableGCSParquet() {
  // Imports a GCS file into a table with Parquet source format.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table';

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'PARQUET',
    location: 'US',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);

  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

PHP

Antes de probar este ejemplo, sigue las instrucciones de configuración para PHP incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de PHP de BigQuery.

use Google\Cloud\BigQuery\BigQueryClient;
use Google\Cloud\Core\ExponentialBackoff;

/** Uncomment and populate these variables in your code */
// $projectId  = 'The Google project ID';
// $datasetId  = 'The BigQuery dataset ID';
// $tableId    = 'us_states';

// instantiate the bigquery table service
$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$table = $dataset->table($tableId);

// create the import job
$gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.parquet';
$loadConfig = $table->loadFromStorage($gcsUri)->sourceFormat('PARQUET');
$job = $table->runJob($loadConfig);
// poll the job until it is complete
$backoff = new ExponentialBackoff(10);
$backoff->execute(function () use ($job) {
    print('Waiting for job to complete' . PHP_EOL);
    $job->reload();
    if (!$job->isComplete()) {
        throw new Exception('Job has not yet completed', 500);
    }
});
// check if the job has errors
if (isset($job->info()['status']['errorResult'])) {
    $error = $job->info()['status']['errorResult']['message'];
    printf('Error running job: %s' . PHP_EOL, $error);
} else {
    print('Data imported successfully' . PHP_EOL);
}

Python

Antes de probar esta muestra, sigue las instrucciones de configuración para Python incluidas en la Guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de Python de BigQuery.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(source_format=bigquery.SourceFormat.PARQUET,)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states.parquet"

load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.