Batch prediction

Batch prediction is a valuable technique for applying machine learning models to large datasets efficiently. Instead of processing individual data points, you can submit a batch of data to Gemini for prediction, saving time and computational resources. Unlike online prediction, where you are limited to one input prompt at a time, you can send a large number of multimodal prompts in a single batch request. Then, your responses asynchronously populate in your BigQuery or Cloud Storage storage output location.

Batch requests for Gemini models are discounted 50% from standard requests. To learn more, see the Pricing page.

Batch prediction use case

Consider an online bookstore with thousands of books in its database. Instead of generating descriptions individually for each book, which would be time-consuming, this store can use Gemini batch prediction to process all book information at once. This approach dramatically improves efficiency by reducing the overall processing time and minimizing the computational resources required.

Batch prediction can also improve consistency with automation. By processing all descriptions simultaneously, the model maintains a uniform tone and style across book descriptions, reinforcing brand identity. This bookstore can also integrate batch prediction into their workflow to automatically generate descriptions for new book entries, eliminating manual effort and ensuring their website remains up-to-date with minimal human intervention.

Gemini models that support batch predictions

The following Gemini models support batch predictions.

Batch requests for Gemini models accept BigQuery storage sources and Cloud Storage sources. You can independently choose to output predictions to either a BigQuery table or a JSONL file in a Cloud Storage bucket.

Batch prediction for Cloud Storage

Prepare your inputs

Cloud Storage input

  • File format: JSON Lines (JSONL)
  • Located in us-central1
  • Must have appropriate Cloud Storage permissions for the service account. To grant the service account read and write permission on a Cloud Storage bucket, use the gcloud iam service-accounts add-iam-policy-binding command as follows:

    gcloud projects add-iam-policy-binding PROJECT_ID \
        --member="serviceAccount:SERVICE_ACCOUNT_ID@PROJECT_ID.iam.gserviceaccount.com" \
        --role="storage.objectUser"
    

    Replace the following values:

    • PROJECT_ID: The project that your service account was created in.
    • SERVICE_ACCOUNT_ID: The ID for the service account.
  • The following Gemini models support fileData:

    • gemini-1.5-flash-002
    • gemini-1.5-flash-001
    • gemini-1.5-pro-002
    • gemini-1.5-pro-001
Example input (JSONL)

{"request":{"contents": [{"role": "user", "parts": [{"text": "What is the relation between the following video and image samples?"}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4", "mimeType": "video/mp4"}}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg", "mimeType": "image/jpeg"}}]}]}}
{"request":{"contents": [{"role": "user", "parts": [{"text": "Describe what is happening in this video."}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/another_video.mov", "mimeType": "video/mov"}}]}]}}
        

Request a batch prediction job

Specify your Cloud Storage input table, model, and output location.

REST

To create a batch prediction job, use the projects.locations.batchPredictionJobs.create method.

Before using any of the request data, make the following replacements:

  • LOCATION: A region that supports Gemini models.
  • PROJECT_ID: Your project ID.
  • INPUT_URI: The Cloud Storage location of your JSONL batch prediction input such as gs://bucketname/path/to/file.jsonl.
  • OUTPUT_FORMAT: To output to a BigQuery table, specify bigquery. To output to a Cloud Storage bucket, specify jsonl.
  • DESTINATION: For BigQuery, specify bigqueryDestination. For Cloud Storage, specify gcsDestination.
  • OUTPUT_URI_FIELD_NAME: For BigQuery, specify outputUri. For Cloud Storage, specify outputUriPrefix.
  • OUTPUT_URI: For BigQuery, specify the table location such as bq://myproject.mydataset.output_result. The region of the output BigQuery dataset must be the same as the Vertex AI batch prediction job. For Cloud Storage, specify the bucket and directory location such as gs://mybucket/path/to/output.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs

Request JSON body:

{
  "displayName": "my-cloud-storage-batch-prediction-job",
  "model": "publishers/google/models/gemini-1.5-flash-002",
  "inputConfig": {
    "instancesFormat": "jsonl",
    "gcsSource": {
      "uris" : "INPUT_URI"
    }
  },
  "outputConfig": {
    "predictionsFormat": "OUTPUT_FORMAT",
    "DESTINATION": {
      "OUTPUT_URI_FIELD_NAME": "OUTPUT_URI"
    }
  }
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs"

PowerShell

Save the request body in a file named request.json, and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs" | Select-Object -Expand Content

You should receive a JSON response similar to the following.

The response includes a unique identifier for the batch job. You can poll for the status of the batch job using the BATCH_JOB_ID until the job state is JOB_STATE_SUCCEEDED. For example:

curl \
  -X GET \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.

import time
import vertexai

from vertexai.batch_prediction import BatchPredictionJob

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

# Initialize vertexai
vertexai.init(project=PROJECT_ID, location="us-central1")

input_uri = "gs://cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl"

# Submit a batch prediction job with Gemini model
batch_prediction_job = BatchPredictionJob.submit(
    source_model="gemini-1.5-flash-002",
    input_dataset=input_uri,
    output_uri_prefix=output_uri,
)

# Check job status
print(f"Job resource name: {batch_prediction_job.resource_name}")
print(f"Model resource name with the job: {batch_prediction_job.model_name}")
print(f"Job state: {batch_prediction_job.state.name}")

# Refresh the job until complete
while not batch_prediction_job.has_ended:
    time.sleep(5)
    batch_prediction_job.refresh()

# Check if the job succeeds
if batch_prediction_job.has_succeeded:
    print("Job succeeded!")
else:
    print(f"Job failed: {batch_prediction_job.error}")

# Check the location of the output
print(f"Job output location: {batch_prediction_job.output_location}")

# Example response:
#  Job output location: gs://your-bucket/gen-ai-batch-prediction/prediction-model-year-month-day-hour:minute:second.12345

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Import the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;

/**
 * TODO(developer):  Uncomment/update these variables before running the sample.
 */
// projectId = 'YOUR_PROJECT_ID';
// URI of the output folder in Google Cloud Storage.
// E.g. "gs://[BUCKET]/[OUTPUT]"
// outputUri = 'gs://my-bucket';

// URI of the input file in Google Cloud Storage.
// E.g. "gs://[BUCKET]/[DATASET].jsonl"
// Or try:
// "gs://cloud-samples-data/generative-ai/batch/gemini_multimodal_batch_predict.jsonl"
// for a batch prediction that uses audio, video, and an image.
const inputUri =
  'gs://cloud-samples-data/generative-ai/batch/batch_requests_for_multimodal_input.jsonl';
const location = 'us-central1';
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `${parent}/publishers/google/models/gemini-1.5-flash-002`;

// Specify the location of the api endpoint.
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiate the client.
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);

// Create a Gemini batch prediction job using Google Cloud Storage input and output buckets.
async function create_batch_prediction_gemini_gcs() {
  const gcsSource = new aiplatform.GcsSource({
    uris: [inputUri],
  });

  const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
    gcsSource: gcsSource,
    instancesFormat: 'jsonl',
  });

  const gcsDestination = new aiplatform.GcsDestination({
    outputUriPrefix: outputUri,
  });

  const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
    gcsDestination: gcsDestination,
    predictionsFormat: 'jsonl',
  });

  const batchPredictionJob = new aiplatform.BatchPredictionJob({
    displayName: 'Batch predict with Gemini - GCS',
    model: modelName,
    inputConfig: inputConfig,
    outputConfig: outputConfig,
  });

  const request = {
    parent: parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);
  console.log('Response name: ', response.name);
  // Example response:
  // Response name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
}

await create_batch_prediction_gemini_gcs();

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class CreateBatchPredictionGeminiJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Update these variables before running the sample.
    String project = "PROJECT_ID";
    String gcsDestinationOutputUriPrefix = "gs://MY_BUCKET/";

    createBatchPredictionGeminiJobSample(project, gcsDestinationOutputUriPrefix);
  }

  // Create a batch prediction job using a JSONL input file and output URI, both in Cloud
  // Storage.
  public static BatchPredictionJob createBatchPredictionGeminiJobSample(
      String project, String gcsDestinationOutputUriPrefix) throws IOException {
    String location = "us-central1";
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint(String.format("%s-aiplatform.googleapis.com:443", location))
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      GcsSource gcsSource =
          GcsSource.newBuilder()
              .addUris(
                  "gs://cloud-samples-data/generative-ai/batch/"
                      + "batch_requests_for_multimodal_input.jsonl")
              // Or try
              // "gs://cloud-samples-data/generative-ai/batch/gemini_multimodal_batch_predict.jsonl"
              // for a batch prediction that uses audio, video, and an image.
              .build();
      BatchPredictionJob.InputConfig inputConfig =
          BatchPredictionJob.InputConfig.newBuilder()
              .setInstancesFormat("jsonl")
              .setGcsSource(gcsSource)
              .build();
      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
      BatchPredictionJob.OutputConfig outputConfig =
          BatchPredictionJob.OutputConfig.newBuilder()
              .setPredictionsFormat("jsonl")
              .setGcsDestination(gcsDestination)
              .build();
      String modelName =
          String.format(
              "projects/%s/locations/%s/publishers/google/models/%s",
              project, location, "gemini-1.5-flash-002");

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my-display-name")
              .setModel(modelName) // Add model parameters per request in the input jsonl file.
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      LocationName parent = LocationName.of(project, location);
      BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
      System.out.format("\tName: %s\n", response.getName());
      // Example response:
      //   Name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
      return response;
    }
  }
}

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// batchPredictGCS submits a batch prediction job using GCS data source as its input
func batchPredictGCS(w io.Writer, projectID, location string, inputURIs []string, outputURI string) error {
	// location := "us-central1"
	// inputURIs := []string{"gs://cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl"}
	// outputURI := "gs://<cloud-bucket-name>/<prefix-name>"
	modelName := "gemini-1.5-pro-002"
	jobName := "batch-predict-gcs-test-001"

	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewJobClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("unable to create aiplatform client: %w", err)
	}
	defer client.Close()

	modelParameters, err := structpb.NewValue(map[string]interface{}{
		"temperature":     0.2,
		"maxOutputTokens": 200,
	})
	if err != nil {
		return fmt.Errorf("unable to convert model parameters to protobuf value: %w", err)
	}

	req := &aiplatformpb.CreateBatchPredictionJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		BatchPredictionJob: &aiplatformpb.BatchPredictionJob{
			DisplayName:     jobName,
			Model:           fmt.Sprintf("publishers/google/models/%s", modelName),
			ModelParameters: modelParameters,
			// Check the API reference for `BatchPredictionJob` for supported input and output formats:
			// https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1#google.cloud.aiplatform.v1.BatchPredictionJob
			InputConfig: &aiplatformpb.BatchPredictionJob_InputConfig{
				Source: &aiplatformpb.BatchPredictionJob_InputConfig_GcsSource{
					GcsSource: &aiplatformpb.GcsSource{
						Uris: inputURIs,
					},
				},
				InstancesFormat: "jsonl",
			},
			OutputConfig: &aiplatformpb.BatchPredictionJob_OutputConfig{
				Destination: &aiplatformpb.BatchPredictionJob_OutputConfig_GcsDestination{
					GcsDestination: &aiplatformpb.GcsDestination{
						OutputUriPrefix: outputURI,
					},
				},
				PredictionsFormat: "jsonl",
			},
		},
	}

	job, err := client.CreateBatchPredictionJob(ctx, req)
	if err != nil {
		return err
	}
	fullJobId := job.GetName()
	fmt.Fprintf(w, "submitted batch predict job for model %q\n", job.GetModel())
	fmt.Fprintf(w, "job id: %q\n", fullJobId)
	fmt.Fprintf(w, "job state: %s\n", job.GetState())
	// Example response:
	// submitted batch predict job for model "publishers/google/models/gemini-1.5-pro-002"
	// job id: "projects/.../locations/.../batchPredictionJobs/1234567890000000000"
	// job state: JOB_STATE_PENDING

	for {
		time.Sleep(5 * time.Second)

		job, err := client.GetBatchPredictionJob(ctx, &aiplatformpb.GetBatchPredictionJobRequest{
			Name: fullJobId,
		})
		if err != nil {
			return fmt.Errorf("error: couldn't get updated job state: %w", err)
		}

		if job.GetEndTime() != nil {
			fmt.Fprintf(w, "batch predict job finished with state %s\n", job.GetState())
			break
		} else {
			fmt.Fprintf(w, "batch predict job is running... job state is %s\n", job.GetState())
		}
	}

	return nil
}

Batch prediction output

When a batch prediction task completes, the output is stored in the Cloud Storage bucket or BigQuery table that you specified in your request. For succeeded rows, model responses are stored in the response column. Otherwise, error details are stored in the status column for further inspection.

During long-running jobs, completed predictions are continuously exported to the specified output destination. This begins after 90 minutes. If the batch prediction job is canceled or fails, all completed predictions are exported.

Cloud Storage output example

{
  "status": "",
  "processed_time": "2024-11-01T18:13:16.826+00:00",
  "request": {
    "contents": [
      {
        "parts": [
          {
            "fileData": null,
            "text": "What is the relation between the following video and image samples?"
          },
          {
            "fileData": {
              "fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4",
              "mimeType": "video/mp4"
            },
            "text": null
          },
          {
            "fileData": {
              "fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg",
              "mimeType": "image/jpeg"
            },
            "text": null
          }
        ],
        "role": "user"
      }
    ]
  },
  "response": {
    "candidates": [
      {
        "avgLogprobs": -0.5782725546095107,
        "content": {
          "parts": [
            {
              "text": "This video shows a Google Photos marketing campaign where animals at the Los Angeles Zoo take self-portraits using a modified Google phone housed in a protective case. The image is unrelated."
            }
          ],
          "role": "model"
        },
        "finishReason": "STOP"
      }
    ],
    "modelVersion": "gemini-1.5-flash-002@default",
    "usageMetadata": {
      "candidatesTokenCount": 36,
      "promptTokenCount": 29180,
      "totalTokenCount": 29216
    }
  }
}

Batch prediction for BigQuery

Specify your BigQuery input table, model, and output location. The batch prediction job and your table must be in the same region.

Prepare your inputs

BigQuery storage input

  • Your service account must have have appropriate BigQuery permissions. To grant the service account the BigQuery User role, use the gcloud iam service-accounts add-iam-policy-binding command as follows:

    gcloud projects add-iam-policy-binding PROJECT_ID \
        --member="serviceAccount:SERVICE_ACCOUNT_ID@PROJECT_ID.iam.gserviceaccount.com" \
        --role="roles/bigquery.user"
    

    Replace the following values:

    • PROJECT_ID: The project that your service account was created in.
    • SERVICE_ACCOUNT_ID: The ID for the service account.
  • A request column is required, and must be valid JSON. This JSON data represents your input for the model.

  • The content in the request column must match the structure of a GenerateContentRequest.

  • Your input table can have column data types other than request. These columns can have BigQuery data types except for the following: array, struct, range, datetime, and geography. These columns are ignored for content generation but included in the output table. The system reserves two column names for output: response and status. These are used to provide information about the outcome of the batch prediction job.

  • The following Gemini models support fileData:

    • gemini-1.5-flash-002
    • gemini-1.5-flash-001
    • gemini-1.5-pro-002
    • gemini-1.5-pro-001
Example input (JSON)
        
{
  "contents": [
    {
      "role": "user",
      "parts": [
        {
          "text": "Give me a recipe for banana bread."
        }
      ]
    }
  ],
  "system_instruction": {
    "parts": [
      {
        "text": "You are a chef."
      }
    ]
  }
}
        
        

Request a batch prediction job

REST

To create a batch prediction job, use the projects.locations.batchPredictionJobs.create method.

Before using any of the request data, make the following replacements:

  • LOCATION: A region that supports Gemini models.
  • PROJECT_ID: Your project ID.
  • INPUT_URI: The BigQuery table where your batch prediction input is located such as bq://myproject.mydataset.input_table. Multi-region datasets are not supported.
  • OUTPUT_FORMAT: To output to a BigQuery table, specify bigquery. To output to a Cloud Storage bucket, specify jsonl.
  • DESTINATION: For BigQuery, specify bigqueryDestination. For Cloud Storage, specify gcsDestination.
  • OUTPUT_URI_FIELD_NAME: For BigQuery, specify outputUri. For Cloud Storage, specify outputUriPrefix.
  • OUTPUT_URI: For BigQuery, specify the table location such as bq://myproject.mydataset.output_result. The region of the output BigQuery dataset must be the same as the Vertex AI batch prediction job. For Cloud Storage, specify the bucket and directory location such as gs://mybucket/path/to/output.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs

Request JSON body:

{
  "displayName": "my-bigquery-batch-prediction-job",
  "model": "publishers/google/models/gemini-1.5-flash-002",
  "inputConfig": {
    "instancesFormat": "bigquery",
    "bigquerySource":{
      "inputUri" : "INPUT_URI"
    }
  },
  "outputConfig": {
    "predictionsFormat": "OUTPUT_FORMAT",
    "DESTINATION": {
      "OUTPUT_URI_FIELD_NAME": "OUTPUT_URI"
    }
  }
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs"

PowerShell

Save the request body in a file named request.json, and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs" | Select-Object -Expand Content

You should receive a JSON response similar to the following.

The response includes a unique identifier for the batch job. You can poll for the status of the batch job using the BATCH_JOB_ID until the job state is JOB_STATE_SUCCEEDED. For example:

curl \
  -X GET \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import time
import vertexai

from vertexai.batch_prediction import BatchPredictionJob

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

# Initialize vertexai
vertexai.init(project=PROJECT_ID, location="us-central1")

input_uri = "bq://storage-samples.generative_ai.batch_requests_for_multimodal_input"

# Submit a batch prediction job with Gemini model
batch_prediction_job = BatchPredictionJob.submit(
    source_model="gemini-1.5-flash-002",
    input_dataset=input_uri,
    output_uri_prefix=output_uri,
)

# Check job status
print(f"Job resource name: {batch_prediction_job.resource_name}")
print(f"Model resource name with the job: {batch_prediction_job.model_name}")
print(f"Job state: {batch_prediction_job.state.name}")

# Refresh the job until complete
while not batch_prediction_job.has_ended:
    time.sleep(5)
    batch_prediction_job.refresh()

# Check if the job succeeds
if batch_prediction_job.has_succeeded:
    print("Job succeeded!")
else:
    print(f"Job failed: {batch_prediction_job.error}")

# Check the location of the output
print(f"Job output location: {batch_prediction_job.output_location}")

# Example response:
#  Job output location: bq://Project-ID/gen-ai-batch-prediction/predictions-model-year-month-day-hour:minute:second.12345

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Import the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;

/**
 * TODO(developer):  Uncomment/update these variables before running the sample.
 */
// projectId = 'YOUR_PROJECT_ID';
// URI of the output BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
// outputUri = 'bq://projectid.dataset.table';

// URI of the multimodal input BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
const inputUri =
  'bq://storage-samples.generative_ai.batch_requests_for_multimodal_input';
const location = 'us-central1';
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `${parent}/publishers/google/models/gemini-1.5-flash-002`;

// Specify the location of the api endpoint.
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiate the client.
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);

// Create a Gemini batch prediction job using BigQuery input and output datasets.
async function create_batch_prediction_gemini_bq() {
  const bqSource = new aiplatform.BigQuerySource({
    inputUri: inputUri,
  });

  const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
    bigquerySource: bqSource,
    instancesFormat: 'bigquery',
  });

  const bqDestination = new aiplatform.BigQueryDestination({
    outputUri: outputUri,
  });

  const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
    bigqueryDestination: bqDestination,
    predictionsFormat: 'bigquery',
  });

  const batchPredictionJob = new aiplatform.BatchPredictionJob({
    displayName: 'Batch predict with Gemini - BigQuery',
    model: modelName, // Add model parameters per request in the input BigQuery table.
    inputConfig: inputConfig,
    outputConfig: outputConfig,
  });

  const request = {
    parent: parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);
  console.log('Response name: ', response.name);
  // Example response:
  // Response name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
}

await create_batch_prediction_gemini_bq();

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class CreateBatchPredictionGeminiBigqueryJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Update these variables before running the sample.
    String project = "PROJECT_ID";
    String bigqueryDestinationOutputUri = "bq://PROJECT_ID.MY_DATASET.MY_TABLE";

    createBatchPredictionGeminiBigqueryJobSample(project, bigqueryDestinationOutputUri);
  }

  // Create a batch prediction job using BigQuery input and output datasets.
  public static BatchPredictionJob createBatchPredictionGeminiBigqueryJobSample(
      String project, String bigqueryDestinationOutputUri) throws IOException {
    String location = "us-central1";
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint(String.format("%s-aiplatform.googleapis.com:443", location))
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      BigQuerySource bigquerySource =
          BigQuerySource.newBuilder()
              .setInputUri("bq://storage-samples.generative_ai.batch_requests_for_multimodal_input")
              .build();
      BatchPredictionJob.InputConfig inputConfig =
          BatchPredictionJob.InputConfig.newBuilder()
              .setInstancesFormat("bigquery")
              .setBigquerySource(bigquerySource)
              .build();
      BigQueryDestination bigqueryDestination =
          BigQueryDestination.newBuilder().setOutputUri(bigqueryDestinationOutputUri).build();
      BatchPredictionJob.OutputConfig outputConfig =
          BatchPredictionJob.OutputConfig.newBuilder()
              .setPredictionsFormat("bigquery")
              .setBigqueryDestination(bigqueryDestination)
              .build();
      String modelName =
          String.format(
              "projects/%s/locations/%s/publishers/google/models/%s",
              project, location, "gemini-1.5-flash-002");

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my-display-name")
              .setModel(modelName) // Add model parameters per request in the input BigQuery table.
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      LocationName parent = LocationName.of(project, location);
      BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
      System.out.format("\tName: %s\n", response.getName());
      // Example response:
      //   Name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
      return response;
    }
  }
}

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// batchPredictBQ submits a batch prediction job using BigQuery data source as its input
func batchPredictBQ(w io.Writer, projectID, location string, inputURI string, outputURI string) error {
	// location  := "us-central1"
	// inputURI  := "bq://storage-samples.generative_ai.batch_requests_for_multimodal_input"
	// outputURI := "bq://<cloud-project-name>.<dataset-name>.<table-name>"
	modelName := "gemini-1.5-pro-002"
	jobName := "batch-predict-bq-test-001"

	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewJobClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("unable to create aiplatform client: %w", err)
	}
	defer client.Close()

	modelParameters, err := structpb.NewValue(map[string]interface{}{
		"temperature":     0.2,
		"maxOutputTokens": 200,
	})
	if err != nil {
		return fmt.Errorf("unable to convert model parameters to protobuf value: %w", err)
	}

	req := &aiplatformpb.CreateBatchPredictionJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		BatchPredictionJob: &aiplatformpb.BatchPredictionJob{
			DisplayName:     jobName,
			Model:           fmt.Sprintf("publishers/google/models/%s", modelName),
			ModelParameters: modelParameters,
			// Check the API reference for `BatchPredictionJob` for supported input and output formats:
			// https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1#google.cloud.aiplatform.v1.BatchPredictionJob
			InputConfig: &aiplatformpb.BatchPredictionJob_InputConfig{
				Source: &aiplatformpb.BatchPredictionJob_InputConfig_BigquerySource{
					BigquerySource: &aiplatformpb.BigQuerySource{
						InputUri: inputURI,
					},
				},
				InstancesFormat: "bigquery",
			},

			OutputConfig: &aiplatformpb.BatchPredictionJob_OutputConfig{
				Destination: &aiplatformpb.BatchPredictionJob_OutputConfig_BigqueryDestination{
					BigqueryDestination: &aiplatformpb.BigQueryDestination{
						OutputUri: outputURI,
					},
				},
				PredictionsFormat: "bigquery",
			},
		},
	}

	job, err := client.CreateBatchPredictionJob(ctx, req)
	if err != nil {
		return err
	}
	fullJobId := job.GetName()
	fmt.Fprintf(w, "submitted batch predict job for model %q\n", job.GetModel())
	fmt.Fprintf(w, "job id: %q\n", fullJobId)
	fmt.Fprintf(w, "job state: %s\n", job.GetState())
	// Example response:
	// submitted batch predict job for model "publishers/google/models/gemini-1.5-pro-002"
	// job id: "projects/.../locations/.../batchPredictionJobs/1234567890000000000"
	// job state: JOB_STATE_PENDING

	for {
		time.Sleep(5 * time.Second)

		job, err := client.GetBatchPredictionJob(ctx, &aiplatformpb.GetBatchPredictionJobRequest{
			Name: fullJobId,
		})
		if err != nil {
			return fmt.Errorf("error: couldn't get updated job state: %w", err)
		}

		if job.GetEndTime() != nil {
			fmt.Fprintf(w, "batch predict job finished with state %s\n", job.GetState())
			break
		} else {
			fmt.Fprintf(w, "batch predict job is running... job state is %s\n", job.GetState())
		}
	}

	return nil
}

Retrieve batch output

When a batch prediction task completes, the output is stored in the BigQuery table that you specified in your request.

For succeeded rows, model responses are stored in the response column. Otherwise, error details are stored in the status column for further inspection.

BigQuery output example

request response status
{"content":[{...}]}
{
  "candidates": [
    {
      "content": {
        "role": "model",
        "parts": [
          {
            "text": "In a medium bowl, whisk together the flour, baking soda, baking powder."
          }
        ]
      },
      "finishReason": "STOP",
      "safetyRatings": [
        {
          "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
          "probability": "NEGLIGIBLE",
          "probabilityScore": 0.14057204,
          "severity": "HARM_SEVERITY_NEGLIGIBLE",
          "severityScore": 0.14270912
        }
      ]
    }
  ],
  "usageMetadata": {
    "promptTokenCount": 8,
    "candidatesTokenCount": 396,
    "totalTokenCount": 404
  }
}

What's next