Use an Agent2Agent agent

In addition to the general instructions for using an agent, this page describes features that are specific to A2A agents.

Before you begin

This tutorial assumes that you have read and followed the instructions in:

Supported operations

An A2A agent hosted on Agent Engine exposes a set of operations that correspond directly to the A2A protocol's API endpoints.

Setup

Vertex AI SDK for Python

You can interact with A2A agents deployed to Agent Engine using the Vertex AI SDK for Python, using the same syntax.

To set up A2A with Agent Engine, get an instance of the deployed agent. This instance wraps the underlying A2A endpoints, allowing you to call the endpoints as Python methods.

import vertexai
from google.genai import types

# Replace with your actual values
PROJECT_ID = "your-project-id"
LOCATION = "your-location"
REASONING_ENGINE_ID = "your-reasoning-engine-id"
AGENT_ENGINE_RESOURCE = f"projects/{PROJECT_ID}/locations/{LOCATION}/reasoningEngines/{REASONING_ENGINE_ID}"

client = vertexai.Client(
    project=PROJECT_ID,
    location=LOCATION,
    http_options=types.HttpOptions(
        api_version="v1beta1")
)

remote_agent = client.agent_engines.get(
    name=AGENT_ENGINE_RESOURCE,
)

A2A Python SDK

This method uses the official A2A Python SDK, which provides a client library for interacting with A2A-compliant agents. For more information, see the A2A Python SDK documentation.

First, install the SDK:

pip install a2a-sdk>=0.3.4

Then, get the agent's card to create a client instance. The A2AClient handles the discovery and communication for you.

from google.auth import default
from google.auth.transport.requests import Request
from a2a.client import ClientConfig, ClientFactory
from a2a.types import TransportProtocol
import httpx

# We assume 'agent_card' is an existing AgentCard object.

# Fetch credentials for authentication for demo purpose. Use your own auth
credentials, _ = default(scopes=['https://www.googleapis.com/auth/cloud-platform'])
credentials.refresh(Request())

# Create the client by chaining the factory and config initialization.
factory = ClientFactory(
    ClientConfig(
        supported_transports=[TransportProtocol.http_json], # only support http_json
        use_client_preference=True,
        httpx_client=httpx.AsyncClient(
            headers={
                "Authorization": f"Bearer {credentials.token}",
                "Content-Type": "application/json",
            }
        ),
    )
)
a2a_client = factory.create(agent_card)

Python requests library

The A2A protocol is built on standard HTTP endpoints. You can interact with these endpoints using any HTTP client.

Retrieve the A2A URL from the agent card and define the request headers.

from google.auth import default
from google.auth.transport.requests import Request

# We assume 'agent_card' is an existing object
a2a_url = agent_card.url

# Get an authentication token for demonstration purposes. Use your own authentication mechanism.
credentials, _ = default(scopes=['https://www.googleapis.com/auth/cloud-platform'])
credentials.refresh(Request())

headers = {
    "Authorization": f"Bearer {credentials.token}",
    "Content-Type": "application/json",
}

Retrieve the agent card

Note that Agent Engine does not serve the public agent card. To retrieve the authenticated agent card:

Vertex AI SDK for Python

response = await remote_agent.handle_authenticated_agent_card()

A2A Python SDK

response = await a2a_client.get_card()

Python requests library

card_endpoint = f"{a2a_url}/v1/card"
response = httpx.get(card_endpoint, headers=headers)
print(json.dumps(response.json(), indent=4))

Send a message

To send a message:

Vertex AI SDK for Python

message_data = {
  "messageId": "remote-agent-message-id",
  "role": "user",
  "parts": [{"kind": "text", "text": "What is the exchange rate from USD to EUR today?"}],
}

response = await remote_agent.on_message_send(**message_data)

A2A Python SDK

from a2a.types import Message, Part, TextPart
import pprint

message = Message(
    message_id="remote-agent-message-id",
    role="user",
    parts=[Part(root=TextPart(text="What's the currency rate of USD and EUR"))],
)

response_iterator = a2a_client.send_message(message)

async for chunk in response_iterator:
    pprint.pp(chunk)

Python requests library

import httpx
import json

endpoint = f"{a2a_url}/v1/message:send"

payload = {
    "message": {
        "messageId": "remote-agent-message-id",
        "role": "1",
        "content": [{"text": "What is the exchange rate from USD to EUR today?"}],
    },
    "metadata": {"source": "python_script"},
}

response = httpx.post(endpoint, json=payload, headers=headers)
print(json.dumps(response.json(), indent=4))

Get a task

To get a task and its status

Vertex AI SDK for Python

task_data = {
    "id": task_id,
}

response = await remote_agent.on_get_task(**task_data)

A2A Python SDK

from a2a.types import TaskQueryParams

task_data ={
    "id":task_id,
}
response = await a2a_client.get_task(TaskQueryParams(**task_data))

Python requests library

task_end_point = f"{a2a_url}/v1/tasks/{task_id}"
response = httpx.get(task_end_point, headers=headers)
print(json.dumps(response.json(), indent=4))

Cancel a task

To cancel a task:

Vertex AI SDK for Python

task_data = {
    "id": task_id,
}
response = await remote_agent.on_cancel_task(**task_data)

A2A Python SDK

from a2a.types import TaskQueryParams

task_data ={
    "id":task_id,
}
response = await a2a_client.cancel_task(TaskQueryParams(**task_data))

Python requests library

task_end_point = f"{a2a_url}/v1/tasks/{task_id}:cancel"
response = httpx.post(task_end_point, headers=headers)
print(json.dumps(response.json(), indent=4))

What's next