Use an Agent2Agent agent

Before you begin

This tutorial assumes that you have read and followed the instructions in:

Get an instance of an agent

To query an A2aAgent, you need to first create a new instance or get an existing instance.

To get the A2aAgent corresponding to a specific resource ID:

Vertex AI SDK for Python

import vertexai
from google.genai import types

# Replace with your actual values
PROJECT_ID = "your-project-id"
LOCATION = "your-location"
REASONING_ENGINE_ID = "your-reasoning-engine-id"
AGENT_ENGINE_RESOURCE = f"projects/{PROJECT_ID}/locations/{LOCATION}/reasoningEngines/{REASONING_ENGINE_ID}"

client = vertexai.Client(
    project=PROJECT_ID,
    location=LOCATION,
    http_options=types.HttpOptions(
        api_version="v1beta1")
)

remote_agent = client.agent_engines.get(
    name=AGENT_ENGINE_RESOURCE,
)
print(remote_agent)

A2A Python SDK

This method uses the official A2A Python SDK, which provides a client library for interacting with A2A-compliant agents. For more information, see the A2A Python SDK documentation.

First, install the SDK:

pip install a2a-sdk>=0.3.4

Then, get the agent's card to create a client instance. The A2AClient handles the discovery and communication for you.

from google.auth import default
from google.auth.transport.requests import Request
from a2a.client import ClientConfig, ClientFactory
from a2a.types import TransportProtocol
import httpx

# We assume 'agent_card' is an existing AgentCard object.

# Fetch credentials for authentication for demo purpose. Use your own auth
credentials, _ = default(scopes=['https://www.googleapis.com/auth/cloud-platform'])
credentials.refresh(Request())

# Create the client by chaining the factory and config initialization.
factory = ClientFactory(
    ClientConfig(
        supported_transports=[TransportProtocol.http_json], # only support http_json
        use_client_preference=True,
        httpx_client=httpx.AsyncClient(
            headers={
                "Authorization": f"Bearer {credentials.token}",
                "Content-Type": "application/json",
            }
        ),
    )
)
a2a_client = factory.create(agent_card)

Python requests library

The A2A protocol is built on standard HTTP endpoints. You can interact with these endpoints using any HTTP client.

Retrieve the A2A URL from the agent card and define the request headers.

from google.auth import default
from google.auth.transport.requests import Request

# We assume 'agent_card' is an existing object
a2a_url = agent_card.url

# Get an authentication token for demonstration purposes. Use your own authentication mechanism.
credentials, _ = default(scopes=['https://www.googleapis.com/auth/cloud-platform'])
credentials.refresh(Request())

headers = {
    "Authorization": f"Bearer {credentials.token}",
    "Content-Type": "application/json",
}

When using the Vertex AI SDK for Python, the remote_agent object corresponds to an AgentEngine class that contains the following:

  • an agent.api_resource with information about the deployed agent. You can also call agent.operation_schemas() to return the list of operations that the agent supports. See Supported operations for details.
  • an agent.api_client that allows for synchronous service interactions
  • an agent.async_api_client that allows for asynchronous service interactions

The rest of this section assumes that you have an AgentEngine instance, named as remote_agent.

Supported operations

An A2A agent hosted on Agent Engine exposes a set of operations that correspond directly to the A2A protocol's API endpoints.

Retrieve the agent card

Note that Agent Engine does not serve the public agent card. To retrieve the authenticated agent card:

Vertex AI SDK for Python

response = await remote_agent.handle_authenticated_agent_card()

A2A Python SDK

response = await a2a_client.get_card()

Python requests library

card_endpoint = f"{a2a_url}/v1/card"
response = httpx.get(card_endpoint, headers=headers)
print(json.dumps(response.json(), indent=4))

Send a message

To send a message:

Vertex AI SDK for Python

message_data = {
  "messageId": "remote-agent-message-id",
  "role": "user",
  "parts": [{"kind": "text", "text": "What is the exchange rate from USD to EUR today?"}],
}

response = await remote_agent.on_message_send(**message_data)

A2A Python SDK

from a2a.types import Message, Part, TextPart
import pprint

message = Message(
    message_id="remote-agent-message-id",
    role="user",
    parts=[Part(root=TextPart(text="What's the currency rate of USD and EUR"))],
)

response_iterator = a2a_client.send_message(message)

async for chunk in response_iterator:
    pprint.pp(chunk)

Python requests library

import httpx
import json

endpoint = f"{a2a_url}/v1/message:send"

payload = {
    "message": {
        "messageId": "remote-agent-message-id",
        "role": "1",
        "content": [{"text": "What is the exchange rate from USD to EUR today?"}],
    },
    "metadata": {"source": "python_script"},
}

response = httpx.post(endpoint, json=payload, headers=headers)
print(json.dumps(response.json(), indent=4))

Get a task

To get a task and its status

Vertex AI SDK for Python

task_data = {
    "id": task_id,
}

response = await remote_agent.on_get_task(**task_data)

A2A Python SDK

from a2a.types import TaskQueryParams

task_data ={
    "id":task_id,
}
response = await a2a_client.get_task(TaskQueryParams(**task_data))

Python requests library

task_end_point = f"{a2a_url}/v1/tasks/{task_id}"
response = httpx.get(task_end_point, headers=headers)
print(json.dumps(response.json(), indent=4))

Cancel a task

To cancel a task:

Vertex AI SDK for Python

task_data = {
    "id": task_id,
}
response = await remote_agent.on_cancel_task(**task_data)

A2A Python SDK

from a2a.types import TaskQueryParams

task_data ={
    "id":task_id,
}
response = await a2a_client.cancel_task(TaskQueryParams(**task_data))

Python requests library

task_end_point = f"{a2a_url}/v1/tasks/{task_id}:cancel"
response = httpx.post(task_end_point, headers=headers)
print(json.dumps(response.json(), indent=4))

What's next