大規模言語モデルを使用してテキストを分類する(生成 AI)

テキストにクラスまたはカテゴリを割り当てる分類タスクを実行します。カテゴリのリストを指定して選択することも、モデルに独自のカテゴリから選択させることもできます。

コードサンプル

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。 詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

// Text Classification with a Large Language Model
public class PredictTextClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String instance =
        "{ \"content\": \"What is the topic for a given news headline?\n"
            + "- business\n"
            + "- entertainment\n"
            + "- health\n"
            + "- sports\n"
            + "- technology\n"
            + "\n"
            + "Text: Pixel 7 Pro Expert Hands On Review, the Most Helpful Google Phones.\n"
            + "The answer is: technology\n"
            + "\n"
            + "Text: Quit smoking?\n"
            + "The answer is: health\n"
            + "\n"
            + "Text: Roger Federer reveals why he touched Rafael Nadals hand while they were"
            + " crying\n"
            + "The answer is: sports\n"
            + "\n"
            + "Text: Business relief from Arizona minimum-wage hike looking more remote\n"
            + "The answer is: business\n"
            + "\n"
            + "Text: #TomCruise has arrived in Bari, Italy for #MissionImpossible.\n"
            + "The answer is: entertainment\n"
            + "\n"
            + "Text: CNBC Reports Rising Digital Profit as Print Advertising Falls\n"
            + "The answer is:\"}";
    String parameters =
        "{\n"
            + "  \"temperature\": 0,\n"
            + "  \"maxDecodeSteps\": 5,\n"
            + "  \"topP\": 0,\n"
            + "  \"topK\": 1\n"
            + "}";
    String project = "YOUR_PROJECT_ID";
    String publisher = "google";
    String model = "text-bison@001";

    predictTextClassification(instance, parameters, project, publisher, model);
  }

  static void predictTextClassification(
      String instance, String parameters, String project, String publisher, String model)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue.build());

      Value.Builder parameterValueBuilder = Value.newBuilder();
      JsonFormat.parser().merge(parameters, parameterValueBuilder);
      Value parameterValue = parameterValueBuilder.build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
    }
  }
}

次のステップ

他の Google Cloud プロダクトのコードサンプルを検索およびフィルタするには、Google Cloud サンプル ブラウザをご覧ください。