Importazione di dati per il riconoscimento delle azioni video

Importa i dati per il riconoscimento delle azioni video utilizzando il metodo import_data.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Java.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;

public class ImportDataVideoActionRecognitionSample {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String datasetId = "DATASET_ID";
    String gcsSourceUri = "GCS_SOURCE_URI";
    importDataVideoActionRecognitionSample(project, datasetId, gcsSourceUri);
  }

  static void importDataVideoActionRecognitionSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient client = DatasetServiceClient.create(settings)) {
      GcsSource gcsSource = GcsSource.newBuilder().addUris(gcsSourceUri).build();
      ImportDataConfig importConfig0 =
          ImportDataConfig.newBuilder()
              .setGcsSource(gcsSource)
              .setImportSchemaUri(
                  "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
                      + "video_action_recognition_io_format_1.0.0.yaml")
              .build();
      List<ImportDataConfig> importConfigs = new ArrayList<>();
      importConfigs.add(importConfig0);
      DatasetName name = DatasetName.of(project, location, datasetId);
      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> response =
          client.importDataAsync(name, importConfigs);

      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Operation name: %s\n", response.getInitialFuture().get().getName());

      // OperationFuture.get() will block until the operation is finished.
      ImportDataResponse importDataResponse = response.get();
      System.out.format("importDataResponse: %s\n", importDataResponse);
    }
  }
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import aiplatform


def import_data_video_action_recognition_sample(
    project: str,
    dataset_id: str,
    gcs_source_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 1800,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    import_configs = [
        {
            "gcs_source": {"uris": [gcs_source_uri]},
            "import_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/ioformat/video_action_recognition_io_format_1.0.0.yaml",
        }
    ]
    name = client.dataset_path(project=project, location=location, dataset=dataset_id)
    response = client.import_data(name=name, import_configs=import_configs)
    print("Long running operation:", response.operation.name)
    import_data_response = response.result(timeout=timeout)
    print("import_data_response:", import_data_response)

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .