create_training_pipeline メソッドを使用して、表形式分類のトレーニング パイプラインを作成します。
もっと見る
このコードサンプルを含む詳細なドキュメントについては、以下をご覧ください。
コードサンプル
Java
このサンプルを試す前に、Vertex AI クライアント ライブラリをインストールするにある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation.AutoTransformation;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.ArrayList;
public class CreateTrainingPipelineTabularClassificationSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String modelDisplayName = "YOUR_DATASET_DISPLAY_NAME";
String datasetId = "YOUR_DATASET_ID";
String targetColumn = "TARGET_COLUMN";
createTrainingPipelineTableClassification(project, modelDisplayName, datasetId, targetColumn);
}
static void createTrainingPipelineTableClassification(
String project, String modelDisplayName, String datasetId, String targetColumn)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
LocationName locationName = LocationName.of(project, location);
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tables_1.0.0.yaml";
// Set the columns used for training and their data types
Transformation transformation1 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("sepal_width").build())
.build();
Transformation transformation2 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("sepal_length").build())
.build();
Transformation transformation3 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("petal_length").build())
.build();
Transformation transformation4 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("petal_width").build())
.build();
ArrayList<Transformation> transformationArrayList = new ArrayList<>();
transformationArrayList.add(transformation1);
transformationArrayList.add(transformation2);
transformationArrayList.add(transformation3);
transformationArrayList.add(transformation4);
AutoMlTablesInputs autoMlTablesInputs =
AutoMlTablesInputs.newBuilder()
.setTargetColumn(targetColumn)
.setPredictionType("classification")
.addAllTransformations(transformationArrayList)
.setTrainBudgetMilliNodeHours(8000)
.build();
FractionSplit fractionSplit =
FractionSplit.newBuilder()
.setTrainingFraction(0.8)
.setValidationFraction(0.1)
.setTestFraction(0.1)
.build();
InputDataConfig inputDataConfig =
InputDataConfig.newBuilder()
.setDatasetId(datasetId)
.setFractionSplit(fractionSplit)
.build();
Model modelToUpload = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(modelDisplayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(ValueConverter.toValue(autoMlTablesInputs))
.setInputDataConfig(inputDataConfig)
.setModelToUpload(modelToUpload)
.build();
TrainingPipeline trainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);
System.out.println("Create Training Pipeline Tabular Classification Response");
System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());
System.out.format(
"\tTraining Task Definition: %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
System.out.format(
"\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
System.out.format("\tState: %s\n", trainingPipelineResponse.getState());
System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
System.out.format("\tStart Time: %s\n", trainingPipelineResponse.getStartTime());
System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());
InputDataConfig inputDataConfigResponse = trainingPipelineResponse.getInputDataConfig();
System.out.println("\tInput Data Config");
System.out.format("\t\tDataset Id: %s\n", inputDataConfigResponse.getDatasetId());
System.out.format(
"\t\tAnnotations Filter: %s\n", inputDataConfigResponse.getAnnotationsFilter());
FractionSplit fractionSplitResponse = inputDataConfigResponse.getFractionSplit();
System.out.println("\t\tFraction Split");
System.out.format(
"\t\t\tTraining Fraction: %s\n", fractionSplitResponse.getTrainingFraction());
System.out.format(
"\t\t\tValidation Fraction: %s\n", fractionSplitResponse.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", fractionSplitResponse.getTestFraction());
FilterSplit filterSplit = inputDataConfigResponse.getFilterSplit();
System.out.println("\t\tFilter Split");
System.out.format("\t\t\tTraining Fraction: %s\n", filterSplit.getTrainingFilter());
System.out.format("\t\t\tValidation Fraction: %s\n", filterSplit.getValidationFilter());
System.out.format("\t\t\tTest Fraction: %s\n", filterSplit.getTestFilter());
PredefinedSplit predefinedSplit = inputDataConfigResponse.getPredefinedSplit();
System.out.println("\t\tPredefined Split");
System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());
TimestampSplit timestampSplit = inputDataConfigResponse.getTimestampSplit();
System.out.println("\t\tTimestamp Split");
System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());
Model modelResponse = trainingPipelineResponse.getModelToUpload();
System.out.println("\tModel To Upload");
System.out.format("\t\tName: %s\n", modelResponse.getName());
System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());
System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("\t\tMeta Data: %s\n", modelResponse.getMetadata());
System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());
System.out.format(
"\t\tSupported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList().toString());
System.out.format(
"\t\tSupported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList().toString());
System.out.format(
"\t\tSupported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList().toString());
System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
System.out.format("\t\tLables: %s\n", modelResponse.getLabelsMap());
PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
System.out.println("\tPredict Schemata");
System.out.format("\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
System.out.format(
"\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
System.out.format(
"\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());
for (Model.ExportFormat supportedExportFormat :
modelResponse.getSupportedExportFormatsList()) {
System.out.println("\tSupported Export Format");
System.out.format("\t\tId: %s\n", supportedExportFormat.getId());
}
ModelContainerSpec containerSpec = modelResponse.getContainerSpec();
System.out.println("\tContainer Spec");
System.out.format("\t\tImage Uri: %s\n", containerSpec.getImageUri());
System.out.format("\t\tCommand: %s\n", containerSpec.getCommandList());
System.out.format("\t\tArgs: %s\n", containerSpec.getArgsList());
System.out.format("\t\tPredict Route: %s\n", containerSpec.getPredictRoute());
System.out.format("\t\tHealth Route: %s\n", containerSpec.getHealthRoute());
for (EnvVar envVar : containerSpec.getEnvList()) {
System.out.println("\t\tEnv");
System.out.format("\t\t\tName: %s\n", envVar.getName());
System.out.format("\t\t\tValue: %s\n", envVar.getValue());
}
for (Port port : containerSpec.getPortsList()) {
System.out.println("\t\tPort");
System.out.format("\t\t\tContainer Port: %s\n", port.getContainerPort());
}
for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
System.out.println("\tDeployed Model");
System.out.format("\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
System.out.format("\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}
Status status = trainingPipelineResponse.getError();
System.out.println("\tError");
System.out.format("\t\tCode: %s\n", status.getCode());
System.out.format("\t\tMessage: %s\n", status.getMessage());
}
}
}
Node.js
このサンプルを試す前に、Vertex AI クライアント ライブラリをインストールするにある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const targetColumn = 'YOUR_TARGET_COLUMN';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);
async function createTrainingPipelineTablesClassification() {
// Configure the parent resource
const parent = `projects/${project}/locations/${location}`;
const transformations = [
{auto: {column_name: 'sepal_width'}},
{auto: {column_name: 'sepal_length'}},
{auto: {column_name: 'petal_length'}},
{auto: {column_name: 'petal_width'}},
];
const trainingTaskInputsObj = new definition.AutoMlTablesInputs({
targetColumn: targetColumn,
predictionType: 'classification',
transformations: transformations,
trainBudgetMilliNodeHours: 8000,
disableEarlyStopping: false,
optimizationObjective: 'minimize-log-loss',
});
const trainingTaskInputs = trainingTaskInputsObj.toValue();
const modelToUpload = {displayName: modelDisplayName};
const inputDataConfig = {
datasetId: datasetId,
fractionSplit: {
trainingFraction: 0.8,
validationFraction: 0.1,
testFraction: 0.1,
},
};
const trainingPipeline = {
displayName: trainingPipelineDisplayName,
trainingTaskDefinition:
'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tables_1.0.0.yaml',
trainingTaskInputs,
inputDataConfig,
modelToUpload,
};
const request = {
parent,
trainingPipeline,
};
// Create training pipeline request
const [response] =
await pipelineServiceClient.createTrainingPipeline(request);
console.log('Create training pipeline tabular classification response');
console.log(`Name : ${response.name}`);
console.log('Raw response:');
console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineTablesClassification();
Python
このサンプルを試す前に、Vertex AI クライアント ライブラリをインストールするにある Python の設定手順を完了してください。詳細については、Vertex AI Python API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
def create_training_pipeline_tabular_classification_sample(
project: str,
display_name: str,
dataset_id: str,
model_display_name: str,
target_column: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
# set the columns used for training and their data types
transformations = [
{"auto": {"column_name": "sepal_width"}},
{"auto": {"column_name": "sepal_length"}},
{"auto": {"column_name": "petal_length"}},
{"auto": {"column_name": "petal_width"}},
]
training_task_inputs_dict = {
# required inputs
"targetColumn": target_column,
"predictionType": "classification",
"transformations": transformations,
"trainBudgetMilliNodeHours": 8000,
# optional inputs
"disableEarlyStopping": False,
# supported binary classification optimisation objectives:
# maximize-au-roc, minimize-log-loss, maximize-au-prc,
# maximize-precision-at-recall, maximize-recall-at-precision
# supported multi-class classification optimisation objective:
# minimize-log-loss
"optimizationObjective": "minimize-log-loss",
# possibly required inputs
# required when using maximize-precision-at-recall
# "optimizationObjectiveRecallValue": 0.5, # 0.0 - 1.0
# required when using maximize-recall-at-precision
# "optimizationObjectivePrecisionValue": 0.5, # 0.0 - 1.0
}
training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())
training_pipeline = {
"display_name": display_name,
"training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tabular_1.0.0.yaml",
"training_task_inputs": training_task_inputs,
"input_data_config": {
"dataset_id": dataset_id,
"fraction_split": {
"training_fraction": 0.8,
"validation_fraction": 0.1,
"test_fraction": 0.1,
},
},
"model_to_upload": {"display_name": model_display_name},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_training_pipeline(
parent=parent, training_pipeline=training_pipeline
)
print("response:", response)
次のステップ
他の Google Cloud プロダクトに関連するコードサンプルの検索およびフィルタ検索を行うには、Google Cloud のサンプルをご覧ください。