使用 create_batch_prediction_job 方法为 BigQuery 创建批量预测作业。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
Java
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Java 设置说明执行操作。如需了解详情,请参阅 Vertex AI Java API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
public class CreateBatchPredictionJobBigquerySample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "PROJECT";
String displayName = "DISPLAY_NAME";
String modelName = "MODEL_NAME";
String instancesFormat = "INSTANCES_FORMAT";
String bigquerySourceInputUri = "BIGQUERY_SOURCE_INPUT_URI";
String predictionsFormat = "PREDICTIONS_FORMAT";
String bigqueryDestinationOutputUri = "BIGQUERY_DESTINATION_OUTPUT_URI";
createBatchPredictionJobBigquerySample(
project,
displayName,
modelName,
instancesFormat,
bigquerySourceInputUri,
predictionsFormat,
bigqueryDestinationOutputUri);
}
static void createBatchPredictionJobBigquerySample(
String project,
String displayName,
String model,
String instancesFormat,
String bigquerySourceInputUri,
String predictionsFormat,
String bigqueryDestinationOutputUri)
throws IOException {
JobServiceSettings settings =
JobServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
String location = "us-central1";
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (JobServiceClient client = JobServiceClient.create(settings)) {
JsonObject jsonModelParameters = new JsonObject();
Value.Builder modelParametersBuilder = Value.newBuilder();
JsonFormat.parser().merge(jsonModelParameters.toString(), modelParametersBuilder);
Value modelParameters = modelParametersBuilder.build();
BigQuerySource bigquerySource =
BigQuerySource.newBuilder().setInputUri(bigquerySourceInputUri).build();
BatchPredictionJob.InputConfig inputConfig =
BatchPredictionJob.InputConfig.newBuilder()
.setInstancesFormat(instancesFormat)
.setBigquerySource(bigquerySource)
.build();
BigQueryDestination bigqueryDestination =
BigQueryDestination.newBuilder().setOutputUri(bigqueryDestinationOutputUri).build();
BatchPredictionJob.OutputConfig outputConfig =
BatchPredictionJob.OutputConfig.newBuilder()
.setPredictionsFormat(predictionsFormat)
.setBigqueryDestination(bigqueryDestination)
.build();
String modelName = ModelName.of(project, location, model).toString();
BatchPredictionJob batchPredictionJob =
BatchPredictionJob.newBuilder()
.setDisplayName(displayName)
.setModel(modelName)
.setModelParameters(modelParameters)
.setInputConfig(inputConfig)
.setOutputConfig(outputConfig)
.build();
LocationName parent = LocationName.of(project, location);
BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
System.out.format("response: %s\n", response);
System.out.format("\tName: %s\n", response.getName());
}
}
}
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
from google.cloud import aiplatform_v1beta1
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
def create_batch_prediction_job_bigquery_sample(
project: str,
display_name: str,
model_name: str,
instances_format: str,
bigquery_source_input_uri: str,
predictions_format: str,
bigquery_destination_output_uri: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform_v1beta1.JobServiceClient(client_options=client_options)
model_parameters_dict = {}
model_parameters = json_format.ParseDict(model_parameters_dict, Value())
batch_prediction_job = {
"display_name": display_name,
# Format: 'projects/{project}/locations/{location}/models/{model_id}'
"model": model_name,
"model_parameters": model_parameters,
"input_config": {
"instances_format": instances_format,
"bigquery_source": {"input_uri": bigquery_source_input_uri},
},
"output_config": {
"predictions_format": predictions_format,
"bigquery_destination": {"output_uri": bigquery_destination_output_uri},
},
# optional
"generate_explanation": True,
}
parent = f"projects/{project}/locations/{location}"
response = client.create_batch_prediction_job(
parent=parent, batch_prediction_job=batch_prediction_job
)
print("response:", response)
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。