- NAME
-
- gcloud container clusters create - create a cluster for running containers
- SYNOPSIS
-
-
gcloud container clusters create
NAME
[--accelerator
=[type
=TYPE
,[count
=COUNT
,gpu-driver-version
=GPU_DRIVER_VERSION
,gpu-partition-size
=GPU_PARTITION_SIZE
,gpu-sharing-strategy
=GPU_SHARING_STRATEGY
,max-shared-clients-per-gpu
=MAX_SHARED_CLIENTS_PER_GPU
],…]] [--additional-zones
=ZONE
,[ZONE
,…]] [--addons
=[ADDON
,…]] [--async
] [--autoprovisioning-enable-insecure-kubelet-readonly-port
] [--autoprovisioning-network-tags
=TAGS
,[TAGS
,…]] [--autoprovisioning-resource-manager-tags
=[KEY
=VALUE
,…]] [--autoscaling-profile
=AUTOSCALING_PROFILE
] [--boot-disk-kms-key
=BOOT_DISK_KMS_KEY
] [--cloud-run-config
=[load-balancer-type
=EXTERNAL
,…]] [--cluster-ipv4-cidr
=CLUSTER_IPV4_CIDR
] [--cluster-secondary-range-name
=NAME
] [--cluster-version
=CLUSTER_VERSION
] [--containerd-config-from-file
=PATH_TO_FILE
] [--create-subnetwork
=[KEY
=VALUE
,…]] [--database-encryption-key
=DATABASE_ENCRYPTION_KEY
] [--default-max-pods-per-node
=DEFAULT_MAX_PODS_PER_NODE
] [--disable-default-snat
] [--disk-size
=DISK_SIZE
] [--disk-type
=DISK_TYPE
] [--enable-authorized-networks-on-private-endpoint
] [--enable-autorepair
] [--no-enable-autoupgrade
] [--enable-cilium-clusterwide-network-policy
] [--enable-cloud-logging
] [--enable-cloud-monitoring
] [--enable-cloud-run-alpha
] [--enable-confidential-nodes
] [--enable-confidential-storage
] [--enable-cost-allocation
] [--enable-dataplane-v2
] [--enable-dns-access
] [--enable-fleet
] [--enable-fqdn-network-policy
] [--enable-google-cloud-access
] [--enable-gvnic
] [--enable-identity-service
] [--enable-image-streaming
] [--enable-insecure-kubelet-readonly-port
] [--enable-intra-node-visibility
] [--enable-ip-access
] [--enable-ip-alias
] [--enable-kubernetes-alpha
] [--enable-kubernetes-unstable-apis
=API
,[API
,…]] [--enable-l4-ilb-subsetting
] [--enable-legacy-authorization
] [--enable-managed-prometheus
] [--enable-master-global-access
] [--enable-multi-networking
] [--enable-nested-virtualization
] [--enable-network-policy
] [--enable-ray-cluster-logging
] [--enable-ray-cluster-monitoring
] [--enable-secret-manager
] [--enable-service-externalips
] [--enable-shielded-nodes
] [--enable-stackdriver-kubernetes
] [--enable-vertical-pod-autoscaling
] [--fleet-project
=PROJECT_ID_OR_NUMBER
] [--gateway-api
=GATEWAY_API
] [--image-type
=IMAGE_TYPE
] [--in-transit-encryption
=IN_TRANSIT_ENCRYPTION
] [--ipv6-access-type
=IPV6_ACCESS_TYPE
] [--issue-client-certificate
] [--labels
=[KEY
=VALUE
,…]] [--logging
=[COMPONENT
,…]] [--logging-variant
=LOGGING_VARIANT
] [--machine-type
=MACHINE_TYPE
,-m
MACHINE_TYPE
] [--max-nodes-per-pool
=MAX_NODES_PER_POOL
] [--max-pods-per-node
=MAX_PODS_PER_NODE
] [--max-surge-upgrade
=MAX_SURGE_UPGRADE
; default=1] [--max-unavailable-upgrade
=MAX_UNAVAILABLE_UPGRADE
] [--metadata
=KEY
=VALUE
,[KEY
=VALUE
,…]] [--metadata-from-file
=KEY
=LOCAL_FILE_PATH
,[…]] [--min-cpu-platform
=PLATFORM
] [--monitoring
=[COMPONENT
,…]] [--network
=NETWORK
] [--network-performance-configs
=[PROPERTY1
=VALUE1
,…]] [--node-labels
=[NODE_LABEL
,…]] [--node-locations
=ZONE
,[ZONE
,…]] [--node-taints
=[NODE_TAINT
,…]] [--node-version
=NODE_VERSION
] [--notification-config
=[pubsub
=ENABLED
|DISABLED
,pubsub-topic
=TOPIC
,…]] [--num-nodes
=NUM_NODES
; default=3] [--placement-policy
=PLACEMENT_POLICY
] [--placement-type
=PLACEMENT_TYPE
] [--preemptible
] [--private-endpoint-subnetwork
=NAME
] [--private-ipv6-google-access-type
=PRIVATE_IPV6_GOOGLE_ACCESS_TYPE
] [--release-channel
=[CHANNEL
]] [--resource-manager-tags
=[KEY
=VALUE
,…]] [--security-group
=SECURITY_GROUP
] [--security-posture
=SECURITY_POSTURE
] [--services-ipv4-cidr
=CIDR
] [--services-secondary-range-name
=NAME
] [--shielded-integrity-monitoring
] [--shielded-secure-boot
] [--spot
] [--stack-type
=STACK_TYPE
] [--storage-pools
=STORAGE_POOL
,[…]] [--subnetwork
=SUBNETWORK
] [--system-config-from-file
=PATH_TO_FILE
] [--tags
=TAG
,[TAG
,…]] [--threads-per-core
=THREADS_PER_CORE
] [--tier
=TIER
] [--workload-metadata
=WORKLOAD_METADATA
] [--workload-pool
=WORKLOAD_POOL
] [--workload-vulnerability-scanning
=WORKLOAD_VULNERABILITY_SCANNING
] [--binauthz-evaluation-mode
=BINAUTHZ_EVALUATION_MODE
|--enable-binauthz
] [--cluster-dns
=CLUSTER_DNS
--cluster-dns-domain
=CLUSTER_DNS_DOMAIN
--cluster-dns-scope
=CLUSTER_DNS_SCOPE
] [--dataplane-v2-observability-mode
=DATAPLANE_V2_OBSERVABILITY_MODE
|--disable-dataplane-v2-flow-observability
|--enable-dataplane-v2-flow-observability
] [--disable-dataplane-v2-metrics
|--enable-dataplane-v2-metrics
] [[--enable-autoprovisioning
:--autoprovisioning-config-file
=PATH_TO_FILE
| [--max-cpu
=MAX_CPU
--max-memory
=MAX_MEMORY
:--autoprovisioning-image-type
=AUTOPROVISIONING_IMAGE_TYPE
--autoprovisioning-locations
=ZONE
,[ZONE
,…]--autoprovisioning-min-cpu-platform
=PLATFORM
--min-cpu
=MIN_CPU
--min-memory
=MIN_MEMORY
--autoprovisioning-max-surge-upgrade
=AUTOPROVISIONING_MAX_SURGE_UPGRADE
--autoprovisioning-max-unavailable-upgrade
=AUTOPROVISIONING_MAX_UNAVAILABLE_UPGRADE
--autoprovisioning-node-pool-soak-duration
=AUTOPROVISIONING_NODE_POOL_SOAK_DURATION
--autoprovisioning-standard-rollout-policy
=[batch-node-count
=BATCH_NODE_COUNT
,batch-percent
=BATCH_NODE_PERCENTAGE
,batch-soak-duration
=BATCH_SOAK_DURATION
,…]--enable-autoprovisioning-blue-green-upgrade
|--enable-autoprovisioning-surge-upgrade
--autoprovisioning-scopes
=[SCOPE
,…]--autoprovisioning-service-account
=AUTOPROVISIONING_SERVICE_ACCOUNT
--enable-autoprovisioning-autorepair
--enable-autoprovisioning-autoupgrade
[--max-accelerator
=[type
=TYPE
,count
=COUNT
,…] :--min-accelerator
=[type
=TYPE
,count
=COUNT
,…]]]]] [--enable-autoscaling
--location-policy
=LOCATION_POLICY
--max-nodes
=MAX_NODES
--min-nodes
=MIN_NODES
--total-max-nodes
=TOTAL_MAX_NODES
--total-min-nodes
=TOTAL_MIN_NODES
] [--enable-insecure-binding-system-authenticated
--enable-insecure-binding-system-unauthenticated
] [--enable-master-authorized-networks
--master-authorized-networks
=NETWORK
,[NETWORK
,…]] [--enable-network-egress-metering
--enable-resource-consumption-metering
--resource-usage-bigquery-dataset
=RESOURCE_USAGE_BIGQUERY_DATASET
] [--enable-private-endpoint
--enable-private-nodes
--master-ipv4-cidr
=MASTER_IPV4_CIDR
] [--enable-tpu
--tpu-ipv4-cidr
=CIDR
] [--ephemeral-storage-local-ssd
[=[count
=COUNT
]] |--local-nvme-ssd-block
[=[count
=COUNT
]] |--local-ssd-count
=LOCAL_SSD_COUNT
] [--location
=LOCATION
|--region
=REGION
|--zone
=ZONE
,-z
ZONE
] [--maintenance-window
=START_TIME
|--maintenance-window-end
=TIME_STAMP
--maintenance-window-recurrence
=RRULE
--maintenance-window-start
=TIME_STAMP
] [--password
=PASSWORD
--enable-basic-auth
|--username
=USERNAME
,-u
USERNAME
] [--reservation
=RESERVATION
--reservation-affinity
=RESERVATION_AFFINITY
] [--scopes
=[SCOPE
,…]; default="gke-default"--service-account
=SERVICE_ACCOUNT
] [GCLOUD_WIDE_FLAG …
]
-
- DESCRIPTION
- Create a cluster for running containers.
- EXAMPLES
-
To create a cluster with the default configuration, run:
gcloud container clusters create sample-cluster
- POSITIONAL ARGUMENTS
-
NAME
-
The name of the cluster to create.
The name may contain only lowercase alphanumerics and '-', must start with a letter and end with an alphanumeric, and must be no longer than 40 characters.
- FLAGS
-
--accelerator
=[type
=TYPE
,[count
=COUNT
,gpu-driver-version
=GPU_DRIVER_VERSION
,gpu-partition-size
=GPU_PARTITION_SIZE
,gpu-sharing-strategy
=GPU_SHARING_STRATEGY
,max-shared-clients-per-gpu
=MAX_SHARED_CLIENTS_PER_GPU
],…]-
Attaches accelerators (e.g. GPUs) to all nodes.
type
-
(Required) The specific type (e.g. nvidia-tesla-t4 for NVIDIA T4) of accelerator
to attach to the instances. Use
gcloud compute accelerator-types list
to learn about all available accelerator types. count
- (Optional) The number of accelerators to attach to the instances. The default value is 1.
gpu-driver-version
-
(Optional) The NVIDIA driver version to install. GPU_DRIVER_VERSION must be one
of:
`default`: Install the default driver version for this GKE version.
`latest`: Install the latest driver version available for this GKE version. Can only be used for nodes that use Container-Optimized OS.
`disabled`: Skip automatic driver installation. You must manually install a driver after you create the cluster. If you omit the flag `gpu-driver-version`, this is the default option. To learn how to manually install the GPU driver, refer to: https://cloud.google.com/kubernetes-engine/docs/how-to/gpus#installing_drivers
gpu-partition-size
- (Optional) The GPU partition size used when running multi-instance GPUs. For information about multi-instance GPUs, refer to: https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi
gpu-sharing-strategy
- (Optional) The GPU sharing strategy (e.g. time-sharing) to use. For information about GPU sharing, refer to: https://cloud.google.com/kubernetes-engine/docs/concepts/timesharing-gpus
-
(Optional) The max number of containers allowed to share each GPU on the node.
This field is used together with
gpu-sharing-strategy
.
--additional-zones
=ZONE
,[ZONE
,…]-
(DEPRECATED) The set of additional zones in which the specified node footprint
should be replicated. All zones must be in the same region as the cluster's
primary zone. If additional-zones is not specified, all nodes will be in the
cluster's primary zone.
Note that
NUM_NODES
nodes will be created in each zone, such that if you specify--num-nodes=4
and choose one additional zone, 8 nodes will be created.Multiple locations can be specified, separated by commas. For example:
gcloud container clusters create example-cluster --zone us-central1-a --additional-zones us-central1-b,us-central1-c
This flag is deprecated. Use --node-locations=PRIMARY_ZONE,[ZONE,…] instead.
--addons
=[ADDON
,…]-
Addons
(https://cloud.google.com/kubernetes-engine/docs/reference/rest/v1/projects.locations.clusters#Cluster.AddonsConfig)
are additional Kubernetes cluster components. Addons specified by this flag will
be enabled. The others will be disabled. Default addons: HttpLoadBalancing,
HorizontalPodAutoscaling. The Istio addon is deprecated and removed. For more
information and migration, see https://cloud.google.com/istio/docs/istio-on-gke/migrate-to-anthos-service-mesh.
ADDON
must be one of:HttpLoadBalancing
,HorizontalPodAutoscaling
,KubernetesDashboard
,NetworkPolicy
,NodeLocalDNS
,ConfigConnector
,GcePersistentDiskCsiDriver
,GcpFilestoreCsiDriver
,BackupRestore
,GcsFuseCsiDriver
,ParallelstoreCsiDriver
,RayOperator
,CloudRun
. --async
- Return immediately, without waiting for the operation in progress to complete.
--autoprovisioning-enable-insecure-kubelet-readonly-port
-
Enables the Kubelet's insecure read only port for Autoprovisioned Node Pools.
If not set, the value from nodePoolDefaults.nodeConfigDefaults will be used.
To disable the readonly port
--no-autoprovisioning-enable-insecure-kubelet-readonly-port
. -
Applies the given Compute Engine tags (comma separated) on all nodes in the
auto-provisioned node pools of the new Standard cluster or the new Autopilot
cluster.
Examples:
gcloud container clusters create example-cluster --autoprovisioning-network-tags=tag1,tag2
New nodes in auto-provisioned node pools, including ones created by resize or recreate, will have these tags on the Compute Engine API instance object and can be used in firewall rules. See https://cloud.google.com/sdk/gcloud/reference/compute/firewall-rules/create for examples.
-
Applies the specified comma-separated resource manager tags that has the
GCE_FIREWALL purpose to all nodes in the new Autopilot cluster or all
auto-provisioned nodes in the new Standard cluster.
Examples:
gcloud container clusters create example-cluster --autoprovisioning-resource-manager-tags=tagKeys/1234=tagValues/2345
gcloud container clusters create example-cluster --autoprovisioning-resource-manager-tags=my-project/key1=value1
gcloud container clusters create example-cluster --autoprovisioning-resource-manager-tags=12345/key1=value1,23456/key2=value2
gcloud container clusters create example-cluster --autoprovisioning-resource-manager-tags=
All nodes in an Autopilot cluster or all auto-provisioned nodes in a Standard cluster, including nodes that are resized or re-created, will have the specified tags on the corresponding Instance object in the Compute Engine API. You can reference these tags in network firewall policy rules. For instructions, see https://cloud.google.com/firewall/docs/use-tags-for-firewalls.
--autoscaling-profile
=AUTOSCALING_PROFILE
- Set autoscaling behaviour, choices are 'optimize-utilization' and 'balanced'. Default is 'balanced'.
--boot-disk-kms-key
=BOOT_DISK_KMS_KEY
- The Customer Managed Encryption Key used to encrypt the boot disk attached to each node in the node pool. This should be of the form projects/[KEY_PROJECT_ID]/locations/[LOCATION]/keyRings/[RING_NAME]/cryptoKeys/[KEY_NAME]. For more information about protecting resources with Cloud KMS Keys please see: https://cloud.google.com/compute/docs/disks/customer-managed-encryption
--cloud-run-config
=[load-balancer-type
=EXTERNAL
,…]-
Configurations for Cloud Run addon, requires
--addons=CloudRun
for create and--update-addons=CloudRun=ENABLED
for update.load-balancer-type
-
(Optional) Type of load-balancer-type EXTERNAL or INTERNAL.
Examples:
gcloud container clusters create example-cluster --cloud-run-config=load-balancer-type=INTERNAL
--cluster-ipv4-cidr
=CLUSTER_IPV4_CIDR
-
The IP address range for the pods in this cluster in CIDR notation (e.g.
10.0.0.0/14). Prior to Kubernetes version 1.7.0 this must be a subset of
10.0.0.0/8; however, starting with version 1.7.0 can be any RFC 1918 IP range.
If you omit this option, a range is chosen automatically. The automatically chosen range is randomly selected from 10.0.0.0/8 and will not include IP address ranges allocated to VMs, existing routes, or ranges allocated to other clusters. The automatically chosen range might conflict with reserved IP addresses, dynamic routes, or routes within VPCs that peer with this cluster. You should specify
--cluster-ipv4-cidr
to prevent conflicts.This field is not applicable in a Shared VPC setup where the IP address range for the pods must be specified with
--cluster-secondary-range-name
--cluster-secondary-range-name
=NAME
- Set the secondary range to be used as the source for pod IPs. Alias ranges will be allocated from this secondary range. NAME must be the name of an existing secondary range in the cluster subnetwork. Cannot be specified unless '--enable-ip-alias' option is also specified. Cannot be used with '--create-subnetwork' option.
--cluster-version
=CLUSTER_VERSION
-
The Kubernetes version to use for the master and nodes. Defaults to
server-specified.
The default Kubernetes version is available using the following command.
gcloud container get-server-config
--containerd-config-from-file
=PATH_TO_FILE
-
Path of the YAML file that contains containerd configuration entries like
configuring access to private image registries.
For detailed information on the configuration usage, please refer to https://cloud.google.com/kubernetes-engine/docs/how-to/customize-containerd-configuration.
Note: Updating the containerd configuration of an existing cluster or node pool requires recreation of the existing nodes, which might cause disruptions in running workloads.
Use a full or relative path to a local file containing the value of containerd_config.
--create-subnetwork
=[KEY
=VALUE
,…]-
Create a new subnetwork for the cluster. The name and range of the subnetwork
can be customized via optional 'name' and 'range' key-value pairs.
'name' specifies the name of the subnetwork to be created.
'range' specifies the IP range for the new subnetwork. This can either be a netmask size (e.g. '/20') or a CIDR range (e.g. '10.0.0.0/20'). If a netmask size is specified, the IP is automatically taken from the free space in the cluster's network.
Examples:
Create a new subnetwork with a default name and size.
gcloud container clusters create --create-subnetwork ""
Create a new subnetwork named "my-subnet" with netmask of size 21.
gcloud container clusters create --create-subnetwork name=my-subnet,range=/21
Create a new subnetwork with a default name with the primary range of 10.100.0.0/16.
gcloud container clusters create --create-subnetwork range=10.100.0.0/16
Create a new subnetwork with the name "my-subnet" with a default range.
gcloud container clusters create --create-subnetwork name=my-subnet
--database-encryption-key
=DATABASE_ENCRYPTION_KEY
-
Enable Database Encryption.
Enable database encryption that will be used to encrypt Kubernetes Secrets at the application layer. The key provided should be the resource ID in the format of
projects/[KEY_PROJECT_ID]/locations/[LOCATION]/keyRings/[RING_NAME]/cryptoKeys/[KEY_NAME]
. For more information, see https://cloud.google.com/kubernetes-engine/docs/how-to/encrypting-secrets. --default-max-pods-per-node
=DEFAULT_MAX_PODS_PER_NODE
-
The default max number of pods per node for node pools in the cluster.
This flag sets the default max-pods-per-node for node pools in the cluster. If --max-pods-per-node is not specified explicitly for a node pool, this flag value will be used.
Must be used in conjunction with '--enable-ip-alias'.
--disable-default-snat
-
Disable default source NAT rules applied in cluster nodes.
By default, cluster nodes perform source network address translation (SNAT) for packets sent from Pod IP address sources to destination IP addresses that are not in the non-masquerade CIDRs list. For more details about SNAT and IP masquerading, see: https://cloud.google.com/kubernetes-engine/docs/how-to/ip-masquerade-agent#how_ipmasq_works SNAT changes the packet's source IP address to the node's internal IP address.
When this flag is set, GKE does not perform SNAT for packets sent to any destination. You must set this flag if the cluster uses privately reused public IPs.
The --disable-default-snat flag is only applicable to private GKE clusters, which are inherently VPC-native. Thus, --disable-default-snat requires that you also set --enable-ip-alias and --enable-private-nodes.
--disk-size
=DISK_SIZE
- Size for node VM boot disks in GB. Defaults to 100GB.
--disk-type
=DISK_TYPE
-
Type of the node VM boot disk. For version 1.24 and later, defaults to
pd-balanced. For versions earlier than 1.24, defaults to pd-standard.
DISK_TYPE
must be one of:pd-standard
,pd-ssd
,pd-balanced
,hyperdisk-balanced
,hyperdisk-extreme
,hyperdisk-throughput
. - Enable enforcement of --master-authorized-networks CIDR ranges for traffic reaching cluster's control plane via private IP.
--enable-autorepair
-
Enable node autorepair feature for a cluster's default node pool(s).
gcloud container clusters create example-cluster --enable-autorepair
Node autorepair is enabled by default for clusters using COS, COS_CONTAINERD, UBUNTU or UBUNTU_CONTAINERD as a base image, use --no-enable-autorepair to disable.
See https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-repair for more info.
--enable-autoupgrade
-
Sets autoupgrade feature for a cluster's default node pool(s).
gcloud container clusters create example-cluster --enable-autoupgrade
See https://cloud.google.com/kubernetes-engine/docs/node-auto-upgrades for more info.
Enabled by default, use
--no-enable-autoupgrade
to disable. --enable-cilium-clusterwide-network-policy
- Enable Cilium Clusterwide Network Policies on the cluster. Disabled by default.
--enable-cloud-logging
-
(DEPRECATED) Automatically send logs from the cluster to the Google Cloud
Logging API.
Legacy Logging and Monitoring is deprecated. Thus, flag
--enable-cloud-logging
is also deprecated and will be removed in an upcoming release. Please use--logging
(optionally with--monitoring
). For more details, please read: https://cloud.google.com/kubernetes-engine/docs/concepts/about-logs and https://cloud.google.com/kubernetes-engine/docs/how-to/configure-metrics. --enable-cloud-monitoring
-
(DEPRECATED) Automatically send metrics from pods in the cluster to the Google
Cloud Monitoring API. VM metrics will be collected by Google Compute Engine
regardless of this setting.
Legacy Logging and Monitoring is deprecated. Thus, flag
--enable-cloud-monitoring
is also deprecated. Please use--monitoring
(optionally with--logging
). For more details, please read: https://cloud.google.com/kubernetes-engine/docs/how-to/configure-metrics and https://cloud.google.com/kubernetes-engine/docs/concepts/about-logs. --enable-cloud-run-alpha
-
Enable Cloud Run alpha features on this cluster. Selecting this option will
result in the cluster having all Cloud Run alpha API groups and features turned
on.
Cloud Run alpha clusters are not covered by the Cloud Run SLA and should not be used for production workloads.
--enable-confidential-nodes
- Enable confidential nodes for the cluster. Enabling Confidential Nodes will create nodes using Confidential VM https://cloud.google.com/compute/confidential-vm/docs/about-cvm.
--enable-confidential-storage
- Enable confidential storage for the cluster. Enabling Confidential Storage will create boot disk with confidential mode
--enable-cost-allocation
-
Enable the cost management feature.
When enabled, you can get informational GKE cost breakdowns by cluster, namespace and label in your billing data exported to BigQuery (https://cloud.google.com/billing/docs/how-to/export-data-bigquery).
--enable-dataplane-v2
- Enables the new eBPF dataplane for GKE clusters that is required for network security, scalability and visibility features.
--enable-dns-access
-
Enable access to the cluster's control plane over DNS-based endpoint.
DNS-based control plane access is recommended.
--enable-fleet
-
Set cluster project as the fleet host project. This will register the cluster to
the same project. To register the cluster to a fleet in a different project,
please use
--fleet-project=FLEET_HOST_PROJECT
. Example: $ gcloud container clusters create --enable-fleet --enable-fqdn-network-policy
- Enable FQDN Network Policies on the cluster. FQDN Network Policies are disabled by default.
--enable-google-cloud-access
- When you enable Google Cloud Access, any public IP addresses owned by Google Cloud can reach the public control plane endpoint of your cluster.
--enable-gvnic
- Enable the use of GVNIC for this cluster. Requires re-creation of nodes using either a node-pool upgrade or node-pool creation.
--enable-identity-service
-
Enable Identity Service component on the cluster.
When enabled, users can authenticate to Kubernetes cluster with external identity providers.
Identity Service is by default disabled when creating a new cluster. To disable Identity Service in an existing cluster, explicitly set flag
--no-enable-identity-service
. --enable-image-streaming
- Specifies whether to enable image streaming on cluster.
--enable-insecure-kubelet-readonly-port
-
Enables the Kubelet's insecure read only port.
To disable the readonly port on a cluster or node-pool set the flag to
--no-enable-insecure-kubelet-readonly-port
. --enable-intra-node-visibility
-
Enable Intra-node visibility for this cluster.
Enabling intra-node visibility makes your intra-node pod-to-pod traffic visible to the networking fabric. With this feature, you can use VPC flow logging or other VPC features for intra-node traffic.
Enabling it on an existing cluster causes the cluster master and the cluster nodes to restart, which might cause a disruption.
--enable-ip-access
- Enable access to the cluster's control plane over private IP and public IP if --enable-private-endpoint is not enabled.
--enable-ip-alias
- Enable use of alias IPs (https://cloud.google.com/compute/docs/alias-ip/) for Pod IPs. This will require at least two secondary ranges in the subnetwork, one for the pod IPs and another to reserve space for the services range.
--enable-kubernetes-alpha
-
Enable Kubernetes alpha features on this cluster. Selecting this option will
result in the cluster having all Kubernetes alpha API groups and features turned
on. Cluster upgrades (both manual and automatic) will be disabled and the
cluster will be automatically deleted after 30 days.
Alpha clusters are not covered by the Kubernetes Engine SLA and should not be used for production workloads.
--enable-kubernetes-unstable-apis
=API
,[API
,…]- Enable Kubernetes beta API features on this cluster. Beta APIs are not expected to be production ready and should be avoided in production-grade environments.
--enable-l4-ilb-subsetting
- Enable Subsetting for L4 ILB services created on this cluster.
-
Enables the legacy ABAC authentication for the cluster. User rights are granted
through the use of policies which combine attributes together. For a detailed
look at these properties and related formats, see https://kubernetes.io/docs/admin/authorization/abac/.
To use RBAC permissions instead, create or update your cluster with the option
--no-enable-legacy-authorization
. --enable-managed-prometheus
-
Enables managed collection for Managed Service for Prometheus in the cluster.
See https://cloud.google.com/stackdriver/docs/managed-prometheus/setup-managed#enable-mgdcoll-gke for more info.
Enabled by default for cluster versions 1.27 or greater, use --no-enable-managed-prometheus to disable.
--enable-master-global-access
- Use with private clusters to allow access to the master's private endpoint from any Google Cloud region or on-premises environment regardless of the private cluster's region.
--enable-multi-networking
- Enables multi-networking on the cluster. Multi-networking is disabled by default.
--enable-nested-virtualization
-
Enables the use of nested virtualization on the default initial node pool.
Defaults to
false
. Can only be enabled on UBUNTU_CONTAINERD base image or COS_CONTAINERD base image with version 1.28.4-gke.1083000 and above. --enable-network-policy
- Enable network policy enforcement for this cluster. If you are enabling network policy on an existing cluster the network policy addon must first be enabled on the master by using --update-addons=NetworkPolicy=ENABLED flag.
--enable-ray-cluster-logging
- Enable automatic log processing sidecar for Ray clusters.
--enable-ray-cluster-monitoring
- Enable automatic metrics collection for Ray clusters.
--enable-secret-manager
-
Enables the Secret Manager CSI driver provider component. See https://secrets-store-csi-driver.sigs.k8s.io/introduction
https://github.com/GoogleCloudPlatform/secrets-store-csi-driver-provider-gcp
To disable in an existing cluster, explicitly set flag to --no-enable-secret-manager
--enable-service-externalips
- Enables use of services with externalIPs field.
--enable-shielded-nodes
- Enable Shielded Nodes for this cluster. Enabling Shielded Nodes will enable a more secure Node credential bootstrapping implementation. Starting with version 1.18, clusters will have Shielded GKE nodes by default.
--enable-stackdriver-kubernetes
-
(DEPRECATED) Enable Cloud Operations for GKE.
The
--enable-stackdriver-kubernetes
flag is deprecated and will be removed in an upcoming release. Please use--logging
and--monitoring
instead. For more information, please read: https://cloud.google.com/kubernetes-engine/docs/concepts/about-logs and https://cloud.google.com/kubernetes-engine/docs/how-to/configure-metrics. -
Flags for vertical pod autoscaling:
--enable-vertical-pod-autoscaling
- Enable vertical pod autoscaling for a cluster.
--fleet-project
=PROJECT_ID_OR_NUMBER
-
Sets fleet host project for the cluster. If specified, the current cluster will
be registered as a fleet membership under the fleet host project.
Example: $ gcloud container clusters create --fleet-project=my-project
--gateway-api
=GATEWAY_API
-
Enables GKE Gateway controller in this cluster. The value of the flag specifies
which Open Source Gateway API release channel will be used to define Gateway
resources.
GATEWAY_API
must be one of:disabled
- Gateway controller will be disabled in the cluster.
standard
-
Gateway controller will be enabled in the cluster. Resource definitions from the
standard
OSS Gateway API release channel will be installed.
--image-type
=IMAGE_TYPE
-
The image type to use for the cluster. Defaults to server-specified.
Image Type specifies the base OS that the nodes in the cluster will run on. If an image type is specified, that will be assigned to the cluster and all future upgrades will use the specified image type. If it is not specified the server will pick the default image type.
The default image type and the list of valid image types are available using the following command.
gcloud container get-server-config
--in-transit-encryption
=IN_TRANSIT_ENCRYPTION
-
Enable Dataplane V2 in-transit encryption. Dataplane v2 in-transit encryption is
disabled by default.
IN_TRANSIT_ENCRYPTION
must be one of:inter-node-transparent
,none
. --ipv6-access-type
=IPV6_ACCESS_TYPE
-
IPv6 access type of the subnetwork. Defaults to 'external'.
IPV6_ACCESS_TYPE
must be one of:external
,internal
. --issue-client-certificate
-
Issue a TLS client certificate with admin permissions.
When enabled, the certificate and private key pair will be present in MasterAuth field of the Cluster object. For cluster versions before 1.12, a client certificate will be issued by default. As of 1.12, client certificates are disabled by default.
--labels
=[KEY
=VALUE
,…]-
Labels to apply to the Google Cloud resources in use by the Kubernetes Engine
cluster. These are unrelated to Kubernetes labels.
Examples:
gcloud container clusters create example-cluster --labels=label_a=value1,label_b=,label_c=value3
--logging
=[COMPONENT
,…]-
Set the components that have logging enabled. Valid component values are:
SYSTEM
,WORKLOAD
,API_SERVER
,CONTROLLER_MANAGER
,SCHEDULER
,NONE
For more information, see https://cloud.google.com/kubernetes-engine/docs/concepts/about-logs#available-logs
Examples:
gcloud container clusters create --logging=SYSTEM
gcloud container clusters create --logging=SYSTEM,API_SERVER,WORKLOAD
gcloud container clusters create --logging=NONE
--logging-variant
=LOGGING_VARIANT
-
Specifies the logging variant that will be deployed on all the nodes in the
cluster. Valid logging variants are
MAX_THROUGHPUT
,DEFAULT
. If no value is specified, DEFAULT is used.LOGGING_VARIANT
must be one of:DEFAULT
- 'DEFAULT' variant requests minimal resources but may not guarantee high throughput.
MAX_THROUGHPUT
- 'MAX_THROUGHPUT' variant requests more node resources and is able to achieve logging throughput up to 10MB per sec.
--machine-type
=MACHINE_TYPE
,-m
MACHINE_TYPE
-
The type of machine to use for nodes. Defaults to e2-medium. The list of
predefined machine types is available using the following command:
gcloud compute machine-types list
You can also specify custom machine types by providing a string with the format "custom-CPUS-RAM" where "CPUS" is the number of virtual CPUs and "RAM" is the amount of RAM in MiB.
For example, to create a node pool using custom machines with 2 vCPUs and 12 GB of RAM:
gcloud container clusters create high-mem-pool --machine-type=custom-2-12288
--max-nodes-per-pool
=MAX_NODES_PER_POOL
-
The maximum number of nodes to allocate per default initial node pool.
Kubernetes Engine will automatically create enough nodes pools such that each
node pool contains less than
--max-nodes-per-pool
nodes. Defaults to 1000 nodes, but can be set as low as 100 nodes per pool on initial create. --max-pods-per-node
=MAX_PODS_PER_NODE
-
The max number of pods per node for this node pool.
This flag sets the maximum number of pods that can be run at the same time on a node. This will override the value given with --default-max-pods-per-node flag set at the cluster level.
Must be used in conjunction with '--enable-ip-alias'.
--max-surge-upgrade
=MAX_SURGE_UPGRADE
; default=1-
Number of extra (surge) nodes to be created on each upgrade of a node pool.
Specifies the number of extra (surge) nodes to be created during this node pool's upgrades. For example, running the following command will result in creating an extra node each time the node pool is upgraded:
gcloud container clusters create example-cluster --max-surge-upgrade=1 --max-unavailable-upgrade=0
Must be used in conjunction with '--max-unavailable-upgrade'.
-
Number of nodes that can be unavailable at the same time on each upgrade of a
node pool.
Specifies the number of nodes that can be unavailable at the same time while this node pool is being upgraded. For example, running the following command will result in having 3 nodes being upgraded in parallel (1 + 2), but keeping always at least 3 (5 - 2) available each time the node pool is upgraded:
gcloud container clusters create example-cluster --num-nodes=5 --max-surge-upgrade=1 --max-unavailable-upgrade=2
Must be used in conjunction with '--max-surge-upgrade'.
--metadata
=KEY
=VALUE
,[KEY
=VALUE
,…]-
Compute Engine metadata to be made available to the guest operating system
running on nodes within the node pool.
Each metadata entry is a key/value pair separated by an equals sign. Metadata keys must be unique and less than 128 bytes in length. Values must be less than or equal to 32,768 bytes in length. The total size of all keys and values must be less than 512 KB. Multiple arguments can be passed to this flag. For example:
--metadata key-1=value-1,key-2=value-2,key-3=value-3
Additionally, the following keys are reserved for use by Kubernetes Engine:
-
cluster-location
-
cluster-name
-
cluster-uid
-
configure-sh
-
enable-os-login
-
gci-update-strategy
-
gci-ensure-gke-docker
-
instance-template
-
kube-env
-
startup-script
-
user-data
Google Kubernetes Engine sets the following keys by default:
-
serial-port-logging-enable
See also Compute Engine's documentation on storing and retrieving instance metadata.
-
--metadata-from-file
=KEY
=LOCAL_FILE_PATH
,[…]-
Same as
except that the value for the entry will be read from a local file.--metadata
--min-cpu-platform
=PLATFORM
-
When specified, the nodes for the new cluster's default node pool will be
scheduled on host with specified CPU architecture or a newer one.
Examples:
gcloud container clusters create example-cluster --min-cpu-platform=PLATFORM
To list available CPU platforms in given zone, run:
gcloud beta compute zones describe ZONE --format="value(availableCpuPlatforms)"
CPU platform selection is available only in selected zones.
--monitoring
=[COMPONENT
,…]-
Set the components that have monitoring enabled. Valid component values are:
SYSTEM
,WORKLOAD
(Deprecated),NONE
,API_SERVER
,CONTROLLER_MANAGER
,SCHEDULER
,DAEMONSET
,DEPLOYMENT
,HPA
,POD
,STATEFULSET
,STORAGE
,CADVISOR
,KUBELET
,DCGM
For more information, see https://cloud.google.com/kubernetes-engine/docs/how-to/configure-metrics#available-metrics
Examples:
gcloud container clusters create --monitoring=SYSTEM,API_SERVER,POD
gcloud container clusters create --monitoring=NONE
--network
=NETWORK
- The Compute Engine Network that the cluster will connect to. Google Kubernetes Engine will use this network when creating routes and firewalls for the clusters. Defaults to the 'default' network.
--network-performance-configs
=[PROPERTY1
=VALUE1
,…]-
Configures network performance settings for the cluster. Node pools can override
with their own settings.
total-egress-bandwidth-tier
-
Total egress bandwidth is the available outbound bandwidth from a VM, regardless
of whether the traffic is going to internal IP or external IP destinations. The
following tier values are allowed: [TIER_UNSPECIFIED,TIER_1].
See https://cloud.google.com/compute/docs/networking/configure-vm-with-high-bandwidth-configuration for more information.
--node-labels
=[NODE_LABEL
,…]-
Applies the given Kubernetes labels on all nodes in the new node pool.
Examples:
gcloud container clusters create example-cluster --node-labels=label-a=value1,label-2=value2
New nodes, including ones created by resize or recreate, will have these labels on the Kubernetes API node object and can be used in nodeSelectors. See https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/ for examples.
Note that Kubernetes labels, intended to associate cluster components and resources with one another and manage resource lifecycles, are different from Google Kubernetes Engine labels that are used for the purpose of tracking billing and usage information.
--node-locations
=ZONE
,[ZONE
,…]-
The set of zones in which the specified node footprint should be replicated. All
zones must be in the same region as the cluster's master(s), specified by the
-location
,--zone
, or--region
flag. Additionally, for zonal clusters,--node-locations
must contain the cluster's primary zone. If not specified, all nodes will be in the cluster's primary zone (for zonal clusters) or spread across three randomly chosen zones within the cluster's region (for regional clusters).Note that
NUM_NODES
nodes will be created in each zone, such that if you specify--num-nodes=4
and choose two locations, 8 nodes will be created.Multiple locations can be specified, separated by commas. For example:
gcloud container clusters create example-cluster --location us-central1-a --node-locations us-central1-a,us-central1-b
--node-taints
=[NODE_TAINT
,…]-
Applies the given kubernetes taints on all nodes in default node pool(s) in new
cluster, which can be used with tolerations for pod scheduling.
Examples:
gcloud container clusters create example-cluster --node-taints=key1=val1:NoSchedule,key2=val2:PreferNoSchedule
To read more about node-taints, see https://cloud.google.com/kubernetes-engine/docs/node-taints.
--node-version
=NODE_VERSION
-
The Kubernetes version to use for nodes. Defaults to server-specified.
The default Kubernetes version is available using the following command.
gcloud container get-server-config
--notification-config
=[pubsub
=ENABLED
|DISABLED
,pubsub-topic
=TOPIC
,…]-
The notification configuration of the cluster. GKE supports publishing cluster
upgrade notifications to any Pub/Sub topic you created in the same project.
Create a subscription for the topic specified to receive notification messages.
See https://cloud.google.com/pubsub/docs/admin
on how to manage Pub/Sub topics and subscriptions. You can also use the filter
option to specify which event types you'd like to receive from the following
options: SecurityBulletinEvent, UpgradeEvent, UpgradeAvailableEvent.
Examples:
gcloud container clusters create example-cluster --notification-config=pubsub=ENABLED,pubsub-topic=projects/{project}/topics/{topic-name}
gcloud container clusters create example-cluster --notification-config=pubsub=ENABLED,pubsub-topic=projects/{project}/topics/{topic-name},filter="SecurityBulletinEvent|UpgradeEvent"
The project of the Pub/Sub topic must be the same one as the cluster. It can be either the project ID or the project number.
--num-nodes
=NUM_NODES
; default=3- The number of nodes to be created in each of the cluster's zones.
--placement-policy
=PLACEMENT_POLICY
-
Indicates the desired resource policy to use.
gcloud container clusters create node-pool-1 --cluster=example-cluster --placement-policy my-placement
--placement-type
=PLACEMENT_TYPE
-
Placement type allows to define the type of node placement within the default
node pool of this cluster.
UNSPECIFIED
- No requirements on the placement of nodes. This is the default option.COMPACT
- GKE will attempt to place the nodes in a close proximity to each other. This helps to reduce the communication latency between the nodes, but imposes additional limitations on the node pool size.gcloud container clusters create example-cluster --placement-type=COMPACT
PLACEMENT_TYPE
must be one of:UNSPECIFIED
,COMPACT
. --preemptible
-
Create nodes using preemptible VM instances in the new cluster.
gcloud container clusters create example-cluster --preemptible
New nodes, including ones created by resize or recreate, will use preemptible VM instances. See https://cloud.google.com/kubernetes-engine/docs/preemptible-vm for more information on how to use Preemptible VMs with Kubernetes Engine.
--private-endpoint-subnetwork
=NAME
- Sets the subnetwork GKE uses to provision the control plane's private endpoint.
--private-ipv6-google-access-type
=PRIVATE_IPV6_GOOGLE_ACCESS_TYPE
-
Sets the type of private access to Google services over IPv6.
PRIVATE_IPV6_GOOGLE_ACCESS_TYPE must be one of:
bidirectional Allows Google services to initiate connections to GKE pods in this cluster. This is not intended for common use, and requires previous integration with Google services.
disabled Default value. Disables private access to Google services over IPv6.
outbound-only Allows GKE pods to make fast, secure requests to Google services over IPv6. This is the most common use of private IPv6 access.
gcloud alpha container clusters create --private-ipv6-google-access-type=disabled
gcloud alpha container clusters create --private-ipv6-google-access-type=outbound-only
gcloud alpha container clusters create --private-ipv6-google-access-type=bidirectional
PRIVATE_IPV6_GOOGLE_ACCESS_TYPE
must be one of:bidirectional
,disabled
,outbound-only
. --release-channel
=[CHANNEL
]-
Release channel a cluster is subscribed to.
If left unspecified and a version is specified, the cluster is enrolled in the most mature release channel where the version is available (first checking STABLE, then REGULAR, and finally RAPID). Otherwise, if no release channel and no version is specified, the cluster is enrolled in the REGULAR channel with its default version. When a cluster is subscribed to a release channel, Google maintains both the master version and the node version. Node auto-upgrade is enabled by default for release channel clusters and can be controlled via upgrade-scope exclusions.
CHANNEL must be one of:
rapid
'rapid' channel is offered on an early access basis for customers who want to test new releases.
WARNING: Versions available in the 'rapid' channel may be subject to unresolved issues with no known workaround and are not subject to any SLAs.
regular
Clusters subscribed to 'regular' receive versions that are considered GA quality. 'regular' is intended for production users who want to take advantage of new features.
extended
Clusters subscribed to 'extended' can remain on a minor version for 24 months from when the minor version is made available in the Regular channel.
stable
Clusters subscribed to 'stable' receive versions that are known to be stable and reliable in production.
None
Use 'None' to opt-out of any release channel.
CHANNEL
must be one of:rapid
,regular
,extended
,stable
,None
. -
Applies the specified comma-separated resource manager tags that has the
GCE_FIREWALL purpose to all nodes in the new default node pool(s) of a new
cluster.
Examples:
gcloud container clusters create example-cluster --resource-manager-tags=tagKeys/1234=tagValues/2345
gcloud container clusters create example-cluster --resource-manager-tags=my-project/key1=value1
gcloud container clusters create example-cluster --resource-manager-tags=12345/key1=value1,23456/key2=value2
gcloud container clusters create example-cluster --resource-manager-tags=
All nodes, including nodes that are resized or re-created, will have the specified tags on the corresponding Instance object in the Compute Engine API. You can reference these tags in network firewall policy rules. For instructions, see https://cloud.google.com/firewall/docs/use-tags-for-firewalls.
--security-group
=SECURITY_GROUP
-
The name of the RBAC security group for use with Google security groups in
Kubernetes RBAC (https://kubernetes.io/docs/reference/access-authn-authz/rbac/).
To include group membership as part of the claims issued by Google during authentication, a group must be designated as a security group by including it as a direct member of this group.
If unspecified, no groups will be returned for use with RBAC.
--security-posture
=SECURITY_POSTURE
-
Sets the mode of the Kubernetes security posture API's off-cluster features.
To enable advanced mode explicitly set the flag to
--security-posture=enterprise
.To enable in standard mode explicitly set the flag to
--security-posture=standard
To disable in an existing cluster, explicitly set the flag to
--security-posture=disabled
.For more information on enablement, see https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard#feature-enablement.
SECURITY_POSTURE
must be one of:disabled
,standard
,enterprise
. --services-ipv4-cidr
=CIDR
-
Set the IP range for the services IPs.
Can be specified as a netmask size (e.g. '/20') or as in CIDR notion (e.g. '10.100.0.0/20'). If given as a netmask size, the IP range will be chosen automatically from the available space in the network.
If unspecified, the services CIDR range will be chosen with a default mask size.
Cannot be specified unless '--enable-ip-alias' option is also specified.
--services-secondary-range-name
=NAME
- Set the secondary range to be used for services (e.g. ClusterIPs). NAME must be the name of an existing secondary range in the cluster subnetwork. Cannot be specified unless '--enable-ip-alias' option is also specified. Cannot be used with '--create-subnetwork' option.
--shielded-integrity-monitoring
- Enables monitoring and attestation of the boot integrity of the instance. The attestation is performed against the integrity policy baseline. This baseline is initially derived from the implicitly trusted boot image when the instance is created.
--shielded-secure-boot
- The instance will boot with secure boot enabled.
--spot
-
Create nodes using spot VM instances in the new cluster.
gcloud container clusters create example-cluster --spot
New nodes, including ones created by resize or recreate, will use spot VM instances.
--stack-type
=STACK_TYPE
-
IP stack type of the node VMs.
STACK_TYPE
must be one of:ipv4
,ipv4-ipv6
. --storage-pools
=STORAGE_POOL
,[…]-
A list of storage pools where the cluster's boot disks will be provisioned.
STORAGE_POOL must be in the format projects/project/zones/zone/storagePools/storagePool
--subnetwork
=SUBNETWORK
-
The Google Compute Engine subnetwork
(https://cloud.google.com/compute/docs/subnetworks) to which the cluster is
connected. The subnetwork must belong to the network specified by --network.
Cannot be used with the "--create-subnetwork" option.
--system-config-from-file
=PATH_TO_FILE
-
Path of the YAML/JSON file that contains the node configuration, including Linux
kernel parameters (sysctls) and kubelet configs.
Examples:
kubeletConfig: cpuManagerPolicy: static linuxConfig: sysctl: net.core.somaxconn: '2048' net.ipv4.tcp_rmem: '4096 87380 6291456' hugepageConfig: hugepage_size2m: '1024' hugepage_size1g: '2'
List of supported kubelet configs in 'kubeletConfig'.
KEY VALUE cpuManagerPolicy either 'static' or 'none' cpuCFSQuota true or false (enabled by default) cpuCFSQuotaPeriod interval (e.g., '100ms') podPidsLimit integer (The value must be greater than or equal to 1024 and less than 4194304.) KEY VALUE net.core.netdev_max_backlog Any positive integer, less than 2147483647 net.core.rmem_max Any positive integer, less than 2147483647 net.core.wmem_default Any positive integer, less than 2147483647 net.core.wmem_max Any positive integer, less than 2147483647 net.core.optmem_max Any positive integer, less than 2147483647 net.core.somaxconn Must be [128, 2147483647] net.ipv4.tcp_rmem Any positive integer tuple net.ipv4.tcp_wmem Any positive integer tuple net.ipv4.tcp_tw_reuse Must be {0, 1} kernel.shmmni Must be [4096, 32768] kernel.shmmax Must be [0, 18446744073692774399] kernel.shmall Must be [0, 18446744073692774399] KEY VALUE hugepage_size2m Number of 2M huge pages, any positive integer hugepage_size1g Number of 1G huge pages, any positive integer 1G hugepages are only available in following machine familes: c3, m2, c2d, c3d, h3, m3, a2, a3, g2.
Note, updating the system configuration of an existing node pool requires recreation of the nodes which which might cause a disruption.
Use a full or relative path to a local file containing the value of system_config.
-
Applies the given Compute Engine tags (comma separated) on all nodes in the new
node-pool.
Examples:
gcloud container clusters create example-cluster --tags=tag1,tag2
New nodes, including ones created by resize or recreate, will have these tags on the Compute Engine API instance object and can be used in firewall rules. See https://cloud.google.com/sdk/gcloud/reference/compute/firewall-rules/create for examples.
--threads-per-core
=THREADS_PER_CORE
- The number of visible threads per physical core for each node. To disable simultaneous multithreading (SMT) set this to 1.
--tier
=TIER
-
Set the desired tier for the cluster.
TIER
must be one of:standard
,enterprise
. --workload-metadata
=WORKLOAD_METADATA
-
Type of metadata server available to pods running in the node pool.
WORKLOAD_METADATA
must be one of:GCE_METADATA
- Pods running in this node pool have access to the node's underlying Compute Engine Metadata Server.
GKE_METADATA
- Run the Kubernetes Engine Metadata Server on this node. The Kubernetes Engine Metadata Server exposes a metadata API to workloads that is compatible with the V1 Compute Metadata APIs exposed by the Compute Engine and App Engine Metadata Servers. This feature can only be enabled if Workload Identity is enabled at the cluster level.
--workload-pool
=WORKLOAD_POOL
-
Enable Workload Identity on the cluster.
When enabled, Kubernetes service accounts will be able to act as Cloud IAM Service Accounts, through the provided workload pool.
Currently, the only accepted workload pool is the workload pool of the Cloud project containing the cluster,
PROJECT_ID.svc.id.goog
.For more information on Workload Identity, see
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
--workload-vulnerability-scanning
=WORKLOAD_VULNERABILITY_SCANNING
-
Sets the mode of the Kubernetes security posture API's workload vulnerability
scanning.
To enable Advanced vulnerability insights mode explicitly set the flag to
--workload-vulnerability-scanning=enterprise
.To enable in standard mode explicitly set the flag to
--workload-vulnerability-scanning=standard
.To disable in an existing cluster, explicitly set the flag to
--workload-vulnerability-scanning=disabled
.For more information on enablement, see https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard#feature-enablement.
WORKLOAD_VULNERABILITY_SCANNING
must be one of:disabled
,standard
,enterprise
. -
Flags for Binary Authorization:
-
At most one of these can be specified:
--binauthz-evaluation-mode
=BINAUTHZ_EVALUATION_MODE
-
Enable Binary Authorization for this cluster.
BINAUTHZ_EVALUATION_MODE
must be one of:disabled
,project-singleton-policy-enforce
. --enable-binauthz
-
(DEPRECATED) Enable Binary Authorization for this cluster.
The
--enable-binauthz
flag is deprecated. Please use--binauthz-evaluation-mode
instead.
-
At most one of these can be specified:
-
ClusterDNS
--cluster-dns
=CLUSTER_DNS
-
DNS provider to use for this cluster.
CLUSTER_DNS
must be one of:clouddns
- Selects Cloud DNS as the DNS provider for the cluster.
default
- Selects the default DNS provider (kube-dns) for the cluster.
kubedns
- Selects Kube DNS as the DNS provider for the cluster.
--cluster-dns-domain
=CLUSTER_DNS_DOMAIN
-
DNS domain for this cluster. The default value is
cluster.local
. This is configurable when--cluster-dns=clouddns
and--cluster-dns-scope=vpc
are set. The value must be a valid DNS subdomain as defined in RFC 1123. --cluster-dns-scope
=CLUSTER_DNS_SCOPE
-
DNS scope for the Cloud DNS zone created - valid only with
--cluster-dns=clouddns
. Defaults to cluster.CLUSTER_DNS_SCOPE
must be one of:cluster
- Configures the Cloud DNS zone to be private to the cluster.
vpc
- Configures the Cloud DNS zone to be private to the VPC Network.
-
At most one of these can be specified:
--dataplane-v2-observability-mode
=DATAPLANE_V2_OBSERVABILITY_MODE
-
(REMOVED) Select Advanced Datapath Observability mode for the cluster. Defaults
to
DISABLED
.Advanced Datapath Observability allows for a real-time view into pod-to-pod traffic within your cluster.
Examples:
gcloud container clusters create --dataplane-v2-observability-mode=DISABLED
gcloud container clusters create --dataplane-v2-observability-mode=INTERNAL_VPC_LB
gcloud container clusters create --dataplane-v2-observability-mode=EXTERNAL_LB
Flag --dataplane-v2-observability-mode has been removed.
DATAPLANE_V2_OBSERVABILITY_MODE
must be one of:DISABLED
- Disables Advanced Datapath Observability.
EXTERNAL_LB
- Makes Advanced Datapath Observability available to the external network.
INTERNAL_VPC_LB
- Makes Advanced Datapath Observability available from the VPC network.
--disable-dataplane-v2-flow-observability
- Disables Advanced Datapath Observability.
--enable-dataplane-v2-flow-observability
- Enables Advanced Datapath Observability which allows for a real-time view into pod-to-pod traffic within your cluster.
-
At most one of these can be specified:
--disable-dataplane-v2-metrics
- Stops exposing advanced datapath flow metrics on node port.
--enable-dataplane-v2-metrics
- Exposes advanced datapath flow metrics on node port.
-
Node autoprovisioning
--enable-autoprovisioning
-
Enables node autoprovisioning for a cluster.
Cluster Autoscaler will be able to create new node pools. Requires maximum CPU and memory limits to be specified.
This flag argument must be specified if any of the other arguments in this group are specified.
-
At most one of these can be specified:
--autoprovisioning-config-file
=PATH_TO_FILE
-
Path of the JSON/YAML file which contains information about the cluster's node
autoprovisioning configuration. Currently it contains a list of resource limits,
identity defaults for autoprovisioning, node upgrade settings, node management
settings, minimum cpu platform, image type, node locations for autoprovisioning,
disk type and size configuration, Shielded instance settings, and
customer-managed encryption keys settings.
Resource limits are specified in the field 'resourceLimits'. Each resource limits definition contains three fields: resourceType, maximum and minimum. Resource type can be "cpu", "memory" or an accelerator (e.g. "nvidia-tesla-t4" for NVIDIA T4). Use gcloud compute accelerator-types list to learn about available accelerator types. Maximum is the maximum allowed amount with the unit of the resource. Minimum is the minimum allowed amount with the unit of the resource.
Identity default contains at most one of the below fields: serviceAccount: The Google Cloud Platform Service Account to be used by node VMs in autoprovisioned node pools. If not specified, the project's default service account is used. scopes: A list of scopes to be used by node instances in autoprovisioned node pools. Multiple scopes can be specified, separated by commas. For information on defaults, look at: https://cloud.google.com/sdk/gcloud/reference/container/clusters/create#--scopes
Node Upgrade settings are specified under the field 'upgradeSettings', which has the following fields: maxSurgeUpgrade: Number of extra (surge) nodes to be created on each upgrade of an autoprovisioned node pool. maxUnavailableUpgrade: Number of nodes that can be unavailable at the same time on each upgrade of an autoprovisioned node pool.
Node Management settings are specified under the field 'management', which has the following fields: autoUpgrade: A boolean field that indicates if node autoupgrade is enabled for autoprovisioned node pools. autoRepair: A boolean field that indicates if node autorepair is enabled for autoprovisioned node pools.
minCpuPlatform (deprecated): If specified, new autoprovisioned nodes will be scheduled on host with specified CPU architecture or a newer one. Note: Min CPU platform can only be specified in Beta and Alpha.
Autoprovisioned node image is specified under the 'imageType' field. If not specified the default value will be applied.
Autoprovisioning locations is a set of zones where new node pools can be created by Autoprovisioning. Autoprovisioning locations are specified in the field 'autoprovisioningLocations'. All zones must be in the same region as the cluster's master(s).
Disk type and size are specified under the 'diskType' and 'diskSizeGb' fields, respectively. If specified, new autoprovisioned nodes will be created with custom boot disks configured by these settings.
Shielded instance settings are specified under the 'shieldedInstanceConfig' field, which has the following fields: enableSecureBoot: A boolean field that indicates if secure boot is enabled for autoprovisioned nodes. enableIntegrityMonitoring: A boolean field that indicates if integrity monitoring is enabled for autoprovisioned nodes.
Customer Managed Encryption Keys (CMEK) used by new auto-provisioned node pools can be specified in the 'bootDiskKmsKey' field.
Use a full or relative path to a local file containing the value of autoprovisioning_config_file.
-
Flags to configure autoprovisioned nodes
--max-cpu
=MAX_CPU
-
Maximum number of cores in the cluster.
Maximum number of cores to which the cluster can scale.
This flag argument must be specified if any of the other arguments in this group are specified.
--max-memory
=MAX_MEMORY
-
Maximum memory in the cluster.
Maximum number of gigabytes of memory to which the cluster can scale.
This flag argument must be specified if any of the other arguments in this group are specified.
--autoprovisioning-image-type
=AUTOPROVISIONING_IMAGE_TYPE
- Node Autoprovisioning will create new nodes with the specified image type
--autoprovisioning-locations
=ZONE
,[ZONE
,…]- Set of zones where new node pools can be created by autoprovisioning. All zones must be in the same region as the cluster's master(s). Multiple locations can be specified, separated by commas.
--autoprovisioning-min-cpu-platform
=PLATFORM
-
(DEPRECATED) If specified, new autoprovisioned nodes will be scheduled on host
with specified CPU architecture or a newer one.
The
--autoprovisioning-min-cpu-platform
flag is deprecated and will be removed in an upcoming release. More info: https://cloud.google.com/kubernetes-engine/docs/release-notes#March_08_2022 --min-cpu
=MIN_CPU
-
Minimum number of cores in the cluster.
Minimum number of cores to which the cluster can scale.
--min-memory
=MIN_MEMORY
-
Minimum memory in the cluster.
Minimum number of gigabytes of memory to which the cluster can scale.
-
Flags to specify upgrade settings for autoprovisioned nodes:
--autoprovisioning-max-surge-upgrade
=AUTOPROVISIONING_MAX_SURGE_UPGRADE
- Number of extra (surge) nodes to be created on each upgrade of an autoprovisioned node pool.
- Number of nodes that can be unavailable at the same time on each upgrade of an autoprovisioned node pool.
--autoprovisioning-node-pool-soak-duration
=AUTOPROVISIONING_NODE_POOL_SOAK_DURATION
-
Time in seconds to be spent waiting during blue-green upgrade before deleting
the blue pool and completing the update. This argument should be used in
conjunction with
--enable-autoprovisioning-blue-green-upgrade
to take effect. --autoprovisioning-standard-rollout-policy
=[batch-node-count
=BATCH_NODE_COUNT
,batch-percent
=BATCH_NODE_PERCENTAGE
,batch-soak-duration
=BATCH_SOAK_DURATION
,…]-
Standard rollout policy options for blue-green upgrade. This argument should be
used in conjunction with
--enable-autoprovisioning-blue-green-upgrade
to take effect.Batch sizes are specified by one of, batch-node-count or batch-percent. The duration between batches is specified by batch-soak-duration.
Example:
--standard-rollout-policy=batch-node-count=3,batch-soak-duration=60s
--standard-rollout-policy=batch-percent=0.05,batch-soak-duration=180s
-
Flag group to choose the top level upgrade option:
At most one of these can be specified:
--enable-autoprovisioning-blue-green-upgrade
- Whether to use blue-green upgrade for the autoprovisioned node pool.
--enable-autoprovisioning-surge-upgrade
- Whether to use surge upgrade for the autoprovisioned node pool.
-
Flags to specify identity for autoprovisioned nodes:
--autoprovisioning-scopes
=[SCOPE
,…]- The scopes to be used by node instances in autoprovisioned node pools. Multiple scopes can be specified, separated by commas. For information on defaults, look at: https://cloud.google.com/sdk/gcloud/reference/container/clusters/create#--scopes
--autoprovisioning-service-account
=AUTOPROVISIONING_SERVICE_ACCOUNT
- The Google Cloud Platform Service Account to be used by node VMs in autoprovisioned node pools. If not specified, the project default service account is used.
-
Flags to specify node management settings for autoprovisioned nodes:
--enable-autoprovisioning-autorepair
-
Enable node autorepair for autoprovisioned node pools. Use
--no-enable-autoprovisioning-autorepair to disable.
This flag argument must be specified if any of the other arguments in this group are specified.
--enable-autoprovisioning-autoupgrade
-
Enable node autoupgrade for autoprovisioned node pools. Use
--no-enable-autoprovisioning-autoupgrade to disable.
This flag argument must be specified if any of the other arguments in this group are specified.
-
Arguments to set limits on accelerators:
--max-accelerator
=[type
=TYPE
,count
=COUNT
,…]-
Sets maximum limit for a single type of accelerators (e.g. GPUs) in cluster.
type
-
(Required) The specific type (e.g. nvidia-tesla-t4 for NVIDIA T4) of accelerator
for which the limit is set. Use
gcloud compute accelerator-types list
to learn about all available accelerator types. count
-
(Required) The maximum number of accelerators to which the cluster can be
scaled.
This flag argument must be specified if any of the other arguments in this group are specified.
--min-accelerator
=[type
=TYPE
,count
=COUNT
,…]-
Sets minimum limit for a single type of accelerators (e.g. GPUs) in cluster.
Defaults to 0 for all accelerator types if it isn't set.
type
-
(Required) The specific type (e.g. nvidia-tesla-t4 for NVIDIA T4) of accelerator
for which the limit is set. Use
gcloud compute accelerator-types list
to learn about all available accelerator types. count
- (Required) The minimum number of accelerators to which the cluster can be scaled.
-
Cluster autoscaling
--enable-autoscaling
-
Enables autoscaling for a node pool.
Enables autoscaling in the node pool specified by --node-pool or the default node pool if --node-pool is not provided. If not already, --max-nodes or --total-max-nodes must also be set.
--location-policy
=LOCATION_POLICY
-
Location policy specifies the algorithm used when scaling-up the node pool.
-
BALANCED
- Is a best effort policy that aims to balance the sizes of available zones. -
ANY
- Instructs the cluster autoscaler to prioritize utilization of unused reservations, and reduces preemption risk for Spot VMs.
LOCATION_POLICY
must be one of:BALANCED
,ANY
. -
--max-nodes
=MAX_NODES
-
Maximum number of nodes per zone in the node pool.
Maximum number of nodes per zone to which the node pool specified by --node-pool (or default node pool if unspecified) can scale. Ignored unless --enable-autoscaling is also specified.
--min-nodes
=MIN_NODES
-
Minimum number of nodes per zone in the node pool.
Minimum number of nodes per zone to which the node pool specified by --node-pool (or default node pool if unspecified) can scale. Ignored unless --enable-autoscaling is also specified.
--total-max-nodes
=TOTAL_MAX_NODES
-
Maximum number of all nodes in the node pool.
Maximum number of all nodes to which the node pool specified by --node-pool (or default node pool if unspecified) can scale. Ignored unless --enable-autoscaling is also specified.
--total-min-nodes
=TOTAL_MIN_NODES
-
Minimum number of all nodes in the node pool.
Minimum number of all nodes to which the node pool specified by --node-pool (or default node pool if unspecified) can scale. Ignored unless --enable-autoscaling is also specified.
--enable-insecure-binding-system-authenticated
-
Allow using
system:authenticated
as a subject in ClusterRoleBindings and RoleBindings. Allowing bindings that referencesystem:authenticated
is a security risk and is not recommended.To disallow binding
system:authenticated
in a cluster, explicitly set the--no-enable-insecure-binding-system-authenticated
flag instead. --enable-insecure-binding-system-unauthenticated
-
Allow using
system:unauthenticated
andsystem:anonymous
as subjects in ClusterRoleBindings and RoleBindings. Allowing bindings that referencesystem:unauthenticated
andsystem:anonymous
are a security risk and is not recommended.To disallow binding
system:authenticated
in a cluster, explicitly set the--no-enable-insecure-binding-system-unauthenticated
flag instead. -
Master Authorized Networks
-
Allow only specified set of CIDR blocks (specified by the
--master-authorized-networks
flag) to connect to Kubernetes master through HTTPS. Besides these blocks, the following have access as well:1) The private network the cluster connects to if `--enable-private-nodes` is specified. 2) Google Compute Engine Public IPs if `--enable-private-nodes` is not specified.
Use
--no-enable-master-authorized-networks
to disable. When disabled, public internet (0.0.0.0/0) is allowed to connect to Kubernetes master through HTTPS. -
The list of CIDR blocks (up to 100 for private cluster, 50 for public cluster)
that are allowed to connect to Kubernetes master through HTTPS. Specified in
CIDR notation (e.g. 1.2.3.4/30). Cannot be specified unless
--enable-master-authorized-networks
is also specified.
-
Allow only specified set of CIDR blocks (specified by the
-
Exports cluster's usage of cloud resources
--enable-network-egress-metering
-
Enable network egress metering on this cluster.
When enabled, a DaemonSet is deployed into the cluster. Each DaemonSet pod meters network egress traffic by collecting data from the conntrack table, and exports the metered metrics to the specified destination.
Network egress metering is disabled if this flag is omitted, or when
--no-enable-network-egress-metering
is set. --enable-resource-consumption-metering
-
Enable resource consumption metering on this cluster.
When enabled, a table will be created in the specified BigQuery dataset to store resource consumption data. The resulting table can be joined with the resource usage table or with BigQuery billing export.
Resource consumption metering is enabled unless
--no-enable-resource- consumption-metering
is set. --resource-usage-bigquery-dataset
=RESOURCE_USAGE_BIGQUERY_DATASET
-
The name of the BigQuery dataset to which the cluster's usage of cloud resources
is exported. A table will be created in the specified dataset to store cluster
resource usage. The resulting table can be joined with BigQuery Billing Export
to produce a fine-grained cost breakdown.
Examples:
gcloud container clusters create example-cluster --resource-usage-bigquery-dataset=example_bigquery_dataset_name
-
Private Clusters
--enable-private-endpoint
- Cluster is managed using the private IP address of the master API endpoint.
--enable-private-nodes
- Cluster is created with no public IP addresses on the cluster nodes.
--master-ipv4-cidr
=MASTER_IPV4_CIDR
- IPv4 CIDR range to use for the master network. This should have a netmask of size /28 and should be used in conjunction with the --enable-private-nodes flag.
-
Flags relating to Cloud TPUs:
--enable-tpu
-
Enable Cloud TPUs for this cluster.
Can not be specified unless
--enable-ip-alias
is also specified. --tpu-ipv4-cidr
=CIDR
-
Set the IP range for the Cloud TPUs.
Can be specified as a netmask size (e.g. '/20') or as in CIDR notion (e.g. '10.100.0.0/20'). If given as a netmask size, the IP range will be chosen automatically from the available space in the network.
If unspecified, the TPU CIDR range will use automatic default '/20'.
Can not be specified unless '--enable-tpu' and '--enable-ip-alias' are also specified.
-
At most one of these can be specified:
--ephemeral-storage-local-ssd
[=[count
=COUNT
]]-
Parameters for the ephemeral storage filesystem. If unspecified, ephemeral
storage is backed by the boot disk.
Examples:
gcloud container clusters create example_cluster --ephemeral-storage-local-ssd count=2
'count' specifies the number of local SSDs to use to back ephemeral storage. Local SDDs use NVMe interfaces. For first- and second-generation machine types, a nonzero count field is required for local ssd to be configured. For third-generation machine types, the count field is optional because the count is inferred from the machine type.
See https://cloud.google.com/compute/docs/disks/local-ssd for more information.
--local-nvme-ssd-block
[=[count
=COUNT
]]-
Adds the requested local SSDs on all nodes in default node pool(s) in the new
cluster.
Examples:
gcloud container clusters create example_cluster --local-nvme-ssd-block count=2
'count' must be between 1-8 New nodes, including ones created by resize or recreate, will have these local SSDs.
For first- and second-generation machine types, a nonzero count field is required for local ssd to be configured. For third-generation machine types, the count field is optional because the count is inferred from the machine type.
See https://cloud.google.com/compute/docs/disks/local-ssd for more information.
--local-ssd-count
=LOCAL_SSD_COUNT
-
The number of local SSD disks to provision on each node, formatted and mounted
in the filesystem.
Local SSDs have a fixed 375 GB capacity per device. The number of disks that can be attached to an instance is limited by the maximum number of disks available on a machine, which differs by compute zone. See https://cloud.google.com/compute/docs/disks/local-ssd for more information.
-
At most one of these can be specified:
--location
=LOCATION
- Compute zone or region (e.g. us-central1-a or us-central1) for the cluster. Overrides the default compute/region or compute/zone value for this command invocation. Prefer using this flag over the --region or --zone flags.
--region
=REGION
- Compute region (e.g. us-central1) for a regional cluster. Overrides the default compute/region property value for this command invocation.
--zone
=ZONE
,-z
ZONE
- Compute zone (e.g. us-central1-a) for a zonal cluster. Overrides the default compute/zone property value for this command invocation.
-
One of either maintenance-window or the group of maintenance-window flags can be
set.
At most one of these can be specified:
--maintenance-window
=START_TIME
-
Set a time of day when you prefer maintenance to start on this cluster. For
example:
gcloud container clusters create example-cluster --maintenance-window=12:43
The time corresponds to the UTC time zone, and must be in HH:MM format.
Non-emergency maintenance will occur in the 4 hour block starting at the specified time.
This is mutually exclusive with the recurring maintenance windows and will overwrite any existing window. Compatible with maintenance exclusions.
-
Set a flexible maintenance window by specifying a window that recurs per an RFC
5545 RRULE. Non-emergency maintenance will occur in the recurring windows.
Examples:
For a 9-5 Mon-Wed UTC-4 maintenance window:
gcloud container clusters create example-cluster --maintenance-window-start=2000-01-01T09:00:00-04:00 --maintenance-window-end=2000-01-01T17:00:00-04:00 --maintenance-window-recurrence='FREQ=WEEKLY;BYDAY=MO,TU,WE'
For a daily window from 22:00 - 04:00 UTC:
gcloud container clusters create example-cluster --maintenance-window-start=2000-01-01T22:00:00Z --maintenance-window-end=2000-01-02T04:00:00Z --maintenance-window-recurrence=FREQ=DAILY
--maintenance-window-end
=TIME_STAMP
-
End time of the first window (can occur in the past). Must take place after the
start time. The difference in start and end time specifies the length of each
recurrence. See $ gcloud topic
datetimes for information on time formats.
This flag argument must be specified if any of the other arguments in this group are specified.
--maintenance-window-recurrence
=RRULE
-
An RFC 5545 RRULE, specifying how the window will recur. Note that minimum
requirements for maintenance periods will be enforced. Note that FREQ=SECONDLY,
MINUTELY, and HOURLY are not supported.
This flag argument must be specified if any of the other arguments in this group are specified.
--maintenance-window-start
=TIME_STAMP
-
Start time of the first window (can occur in the past). The start time
influences when the window will start for recurrences. See $ gcloud topic datetimes for information on
time formats.
This flag argument must be specified if any of the other arguments in this group are specified.
-
Basic auth
--password
=PASSWORD
- The password to use for cluster auth. Defaults to a server-specified randomly-generated string.
-
Options to specify the username.
At most one of these can be specified:
--enable-basic-auth
-
Enable basic (username/password) auth for the cluster.
--enable-basic-auth
is an alias for--username=admin
;--no-enable-basic-auth
is an alias for--username=""
. Use--password
to specify a password; if not, the server will randomly generate one. For cluster versions before 1.12, if neither--enable-basic-auth
nor--username
is specified,--enable-basic-auth
will default totrue
. After 1.12,--enable-basic-auth
will default tofalse
. --username
=USERNAME
,-u
USERNAME
-
The user name to use for basic auth for the cluster. Use
--password
to specify a password; if not, the server will randomly generate one.
-
Specifies the reservation for the default initial node pool.
--reservation
=RESERVATION
-
The name of the reservation, required when
--reservation-affinity=specific
. --reservation-affinity
=RESERVATION_AFFINITY
-
The type of the reservation for the default initial node pool.
RESERVATION_AFFINITY
must be one of:any
,none
,specific
.
-
Options to specify the node identity.
-
Scopes options.
--scopes
=[SCOPE
,…]; default="gke-default"-
Specifies scopes for the node instances.
Examples:
gcloud container clusters create example-cluster --scopes=https://www.googleapis.com/auth/devstorage.read_only
gcloud container clusters create example-cluster --scopes=bigquery,storage-rw,compute-ro
Multiple scopes can be specified, separated by commas. Various scopes are automatically added based on feature usage. Such scopes are not added if an equivalent scope already exists.
-
monitoring-write
: always added to ensure metrics can be written -
logging-write
: added if Cloud Logging is enabled (--enable-cloud-logging
/--logging
) -
monitoring
: added if Cloud Monitoring is enabled (--enable-cloud-monitoring
/--monitoring
) -
gke-default
: added for Autopilot clusters that use the default service account -
cloud-platform
: added for Autopilot clusters that use any other service account
SCOPE can be either the full URI of the scope or an alias.
Default
scopes are assigned to all instances. Available aliases are:Alias URI bigquery https://www.googleapis.com/auth/bigquery cloud-platform https://www.googleapis.com/auth/cloud-platform cloud-source-repos https://www.googleapis.com/auth/source.full_control cloud-source-repos-ro https://www.googleapis.com/auth/source.read_only compute-ro https://www.googleapis.com/auth/compute.readonly compute-rw https://www.googleapis.com/auth/compute datastore https://www.googleapis.com/auth/datastore default https://www.googleapis.com/auth/devstorage.read_only https://www.googleapis.com/auth/logging.write https://www.googleapis.com/auth/monitoring.write https://www.googleapis.com/auth/pubsub https://www.googleapis.com/auth/service.management.readonly https://www.googleapis.com/auth/servicecontrol https://www.googleapis.com/auth/trace.append gke-default https://www.googleapis.com/auth/devstorage.read_only https://www.googleapis.com/auth/logging.write https://www.googleapis.com/auth/monitoring https://www.googleapis.com/auth/service.management.readonly https://www.googleapis.com/auth/servicecontrol https://www.googleapis.com/auth/trace.append logging-write https://www.googleapis.com/auth/logging.write monitoring https://www.googleapis.com/auth/monitoring monitoring-read https://www.googleapis.com/auth/monitoring.read monitoring-write https://www.googleapis.com/auth/monitoring.write pubsub https://www.googleapis.com/auth/pubsub service-control https://www.googleapis.com/auth/servicecontrol service-management https://www.googleapis.com/auth/service.management.readonly sql (deprecated) https://www.googleapis.com/auth/sqlservice sql-admin https://www.googleapis.com/auth/sqlservice.admin storage-full https://www.googleapis.com/auth/devstorage.full_control storage-ro https://www.googleapis.com/auth/devstorage.read_only storage-rw https://www.googleapis.com/auth/devstorage.read_write taskqueue https://www.googleapis.com/auth/taskqueue trace https://www.googleapis.com/auth/trace.append userinfo-email https://www.googleapis.com/auth/userinfo.email sql
alias do not provide SQL instance management capabilities and have been deprecated. Please, use https://www.googleapis.com/auth/sqlservice.admin orsql-admin
to manage your Google SQL Service instances. -
--service-account
=SERVICE_ACCOUNT
- The Google Cloud Platform Service Account to be used by the node VMs. If a service account is specified, the cloud-platform and userinfo.email scopes are used. If no Service Account is specified, the project default service account is used.
-
Scopes options.
- GCLOUD WIDE FLAGS
-
These flags are available to all commands:
--access-token-file
,--account
,--billing-project
,--configuration
,--flags-file
,--flatten
,--format
,--help
,--impersonate-service-account
,--log-http
,--project
,--quiet
,--trace-token
,--user-output-enabled
,--verbosity
.Run
$ gcloud help
for details. - NOTES
-
These variants are also available:
gcloud alpha container clusters create
gcloud beta container clusters create
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-11-06 UTC.