gcloud beta dataproc sessions create

NAME
gcloud beta dataproc sessions create - create a Dataproc session
SYNOPSIS
gcloud beta dataproc sessions create COMMAND [--async] [--container-image=CONTAINER_IMAGE] [--history-server-cluster=HISTORY_SERVER_CLUSTER] [--kernel=KERNEL] [--kms-key=KMS_KEY] [--labels=[KEY=VALUE,…]] [--max-idle=MAX_IDLE] [--metastore-service=METASTORE_SERVICE] [--property=[PROPERTY=VALUE,…]] [--request-id=REQUEST_ID] [--service-account=SERVICE_ACCOUNT] [--session_template=SESSION_TEMPLATE] [--staging-bucket=STAGING_BUCKET] [--tags=[TAGS,…]] [--ttl=TTL] [--version=VERSION] [--network=NETWORK     | --subnet=SUBNET] [GCLOUD_WIDE_FLAG]
DESCRIPTION
(BETA) Create various sessions, such as Spark.
EXAMPLES
To create a Spark session, run:
gcloud beta dataproc sessions create spark my-session --location='us-central1'
FLAGS
--async
Return immediately without waiting for the operation in progress to complete.
--container-image=CONTAINER_IMAGE
Optional custom container image to use for the batch/session runtime environment. If not specified, a default container image will be used. The value should follow the container image naming format: {registry}/{repository}/{name}:{tag}, for example, gcr.io/my-project/my-image:1.2.3
--history-server-cluster=HISTORY_SERVER_CLUSTER
Spark History Server configuration for the batch/session job. Resource name of an existing Dataproc cluster to act as a Spark History Server for the workload in the format: "projects/{project_id}/regions/{region}/clusters/{cluster_name}".
--kernel=KERNEL
Jupyter kernel type. The value could be "python" or "scala". KERNEL must be one of: python, scala.
--kms-key=KMS_KEY
Cloud KMS key to use for encryption.
--labels=[KEY=VALUE,…]
List of label KEY=VALUE pairs to add.

Keys must start with a lowercase character and contain only hyphens (-), underscores (_), lowercase characters, and numbers. Values must contain only hyphens (-), underscores (_), lowercase characters, and numbers.

--max-idle=MAX_IDLE
The duration after which an idle session will be automatically terminated, for example, "20m" or "2h". A session is considered idle if it has no active Spark applications and no active Jupyter kernels. Run gcloud topic datetimes for information on duration formats.
--metastore-service=METASTORE_SERVICE
Name of a Dataproc Metastore service to be used as an external metastore in the format: "projects/{project-id}/locations/{region}/services/{service-name}".
--property=[PROPERTY=VALUE,…]
Specifies configuration properties.
--request-id=REQUEST_ID
A unique ID that identifies the request. If the service receives two session create requests with the same request_id, the second request is ignored and the operation that corresponds to the first session created and stored in the backend is returned. Recommendation: Always set this value to a UUID. The value must contain only letters (a-z, A-Z), numbers (0-9), underscores (), and hyphens (-). The maximum length is 40 characters.
--service-account=SERVICE_ACCOUNT
The IAM service account to be used for a batch/session job.
--session_template=SESSION_TEMPLATE
The session template to use for creating the session.
--staging-bucket=STAGING_BUCKET
The Cloud Storage bucket to use to store job dependencies, config files, and job driver console output. If not specified, the default [staging bucket] (https://cloud.google.com/dataproc-serverless/docs/concepts/buckets) is used.
--tags=[TAGS,…]
Network tags for traffic control.
--ttl=TTL
The duration after the workload will be unconditionally terminated, for example, '20m' or '1h'. Run gcloud topic datetimes for information on duration formats.
--version=VERSION
Optional runtime version. If not specified, a default version will be used.
At most one of these can be specified:
--network=NETWORK
Network URI to connect network to.
--subnet=SUBNET
Subnetwork URI to connect network to. Subnet must have Private Google Access enabled.
GCLOUD WIDE FLAGS
These flags are available to all commands: --help.

Run $ gcloud help for details.

COMMANDS
COMMAND is one of the following:
spark
(BETA) Create a Spark session.
NOTES
This command is currently in beta and might change without notice.