研究者向け Google Cloud

今後の研究に飛躍的な進歩をもたらします。Google Cloud のトレーニング、無料クレジット、リソースを活用して研究を加速できます。

USC の研究者は Google Cloud を使用して創薬プロセスを加速

メリットを確認する

学術研究用に最大 5,000 ドルの Google Cloud クレジットを無料で受け取る申請をしましょう。Google のハイ パフォーマンス コンピューティング機能をご利用ください。

Google Cloud Skills Boost による無料のオンライン トレーニングにアクセスし、プラットフォームから学習クレジットを申請して、Google Cloud の使用を開始します。

画期的な研究を行っている同業者のコミュニティと交流できます。オンライン コミュニティでアイデアを共有したり、Google Cloud のリサーチ イノベーターに申し込んだりできます。

Google Cloud を学ぶ

Google Cloud Skills Boost の Google Cloud カタログにアクセスして、実践演習にお役立てください。お申し込みをすると、最大 200 クレジットを受け取れます。学生とクレジットを共有して、ラボの完了に注目しましょう。

研究分野概要トレーニング
研究、開発、プロトタイピング
RAD Lab

Google Cloud ベースのサンドボックス環境である RAD Lab を体験してください。RAD Lab は、チームが研究開発から本番環境へ迅速に移行できるように支援します。

  • GitHub - Rad Lab のコード リポジトリを確認する

ハイ パフォーマンス コンピューティング
HPC サブスクリプション

Google Cloud の HPC サブスクリプションを使用することで、研究者は技術的な専門知識レベルを問わず、固定のサブスクリプション料金で費用の超過を避けながら、プロジェクトを速やかに立ち上げることができます。

  • チュートリアル - Slurm Resource Manager を使用した Jupyter ノートブックのホスティング

  • Codelab - Slurm を利用した自動スケーリング HPC クラスタのデプロイ

環境科学
画像処理

大規模なコンピューティング能力を使用してパターンを認識し、画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです。

  • Codelab - AutoML Vision を使用してデバイス上の画像分類のトレーニングとデプロイを行う

  • Google Cloud Skills Boost - AutoML Vision で雲の画像を分類する

TPU で Keras を使用した花の画像の分類

Keras と TensorFlow を使用して、独自の畳み込みニューラル ネットワークをゼロから構築して、トレーニングし、調整する方法を学びます。

  • Codelab - TPU スピードのデータ パイプライン(tf.data.Dataset と TFRecords)を使用する

  • Codelab - Keras と TPU での最新の convnets、squeezenet、Xception

ライフ サイエンス
Genomics

Cloud Life Sciences(旧称 Google Genomics)を使用して、生物医学データを大規模に処理する方法を学習します。

医療

Cloud Healthcare API は、Google Cloud に医療データを保存してアクセスするためのマネージド ソリューションを提供し、既存の医療システムと Google Cloud でホストされるアプリケーション間の重要な橋渡しを行います。

社会科学
Cloud AI Platform

ローカルと AI Platform の両方で TensorFlow 2.x のモデル トレーニングの実践演習を行います。トレーニングした後、モデルを AI Platform にデプロイしてデータを予測する方法を学びます。

ML API

「Cloud Vision API で画像内のラベル、顔、ランドマークを検出する」などのラボを受講して ML API の実践演習を行います。

物理科学
画像解析と分類

Cloud Vision API を使用すると、高度な機械学習モデルをシンプルな REST API にカプセル化し、画像の内容を把握することができます。Vision API に画像を送信し、物体、顔、ランドマークを検出することを確認します。

数理科学
金融サービス

Google Cloud の ML テクノロジー(特にディープ ラーニング)は、時系列分析の大きな可能性を秘めています。時系列の精度が高くなり、オーバーラップが始まると、機械学習は信号とノイズを分離する方式を提供します。

  • チュートリアル - HTCondor と Compute Engine を使用したポートフォリオ リスクの分析

データ サイエンス

Google Cloud 上に構築すると、現実世界の問題に高度な統計的手法と ML の手法を適用できます。

  • Codelab - Cloud Dataflow でのビッグデータ テキスト処理パイプラインの実行

  • Google Cloud Skills Boost - Vertex AI Workbench ノートブック: Qwik Start

Jupyter、R、RStudio

Google Cloud で大規模なテクニカル コンピューティングを行います。

  • チュートリアル - Google Cloud の R によるデータ サイエンス: 探索的データ分析についてのチュートリアル

コンピュータ サイエンス
メディアとレンダリング

Google Cloud を使用して OpenCue レンダリング管理システムを Linux 仮想マシン(VM)にデプロイする方法を学びます。

ワークロード マネージャー

クラスタ管理を簡素化するワークロード マネージャーを使用して使用率と効率性を最適化する方法を学習します。

  • 動画 - Google Cloud Workload Manager

コンテナと Kubernetes

基盤となるインフラストラクチャの設定ではなく、Kubernetes を体験することに注目して、マネージド環境を使用する方法を学びます。

MapReduce - Hadoop / Spark

Cloud Dataproc クラスタは迅速に作成でき、いつでもサイズ変更が可能です。このため、データ パイプラインの成長にクラスタが追いつかなくなることを心配する必要はありません。

  • Google Cloud Skills Boost - Cloud Dataproc の概要: Hadoop と Spark

  • Codelab - Cloud Dataproc によるマネージド Hadoop / Spark クラスタのプロビジョニング

リモート デスクトップと可視化

Chrome リモート デスクトップ サービスまたは仮想 Linux ワークステーションのセットアップ方法を学びます。

  • チュートリアル - Compute Engine での Linux 向け Chrome リモート デスクトップのセットアップ

  • チュートリアル - 仮想 GPU による高速 Linux ワークステーションの作成

Lustre

エンタープライズ クラスの DDN EXAScaler Lustre ソフトウェアには、Google Cloud Marketplace とオープンソースのスクリプト セットからアクセスできます。これにより、Compute Engine の Lustre ストレージ クラスタを簡単に構成してデプロイできます。

  • Codelab - Google Cloud に Lustre 並列ファイル システムをデプロイする

生成 AI のトレーニング

大規模言語モデルと Google Cloud の生成 AI ソリューションの基礎を学びます。

Google Cloud を学ぶ

RAD Lab

Google Cloud ベースのサンドボックス環境である RAD Lab を体験してください。RAD Lab は、チームが研究開発から本番環境へ迅速に移行できるように支援します。

  • GitHub - Rad Lab のコード リポジトリを確認する

HPC サブスクリプション

Google Cloud の HPC サブスクリプションを使用することで、研究者は技術的な専門知識レベルを問わず、固定のサブスクリプション料金で費用の超過を避けながら、プロジェクトを速やかに立ち上げることができます。

  • チュートリアル - Slurm Resource Manager を使用した Jupyter ノートブックのホスティング

  • Codelab - Slurm を利用した自動スケーリング HPC クラスタのデプロイ

画像処理

大規模なコンピューティング能力を使用してパターンを認識し、画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです。

  • Codelab - AutoML Vision を使用してデバイス上の画像分類のトレーニングとデプロイを行う

  • Google Cloud Skills Boost - AutoML Vision で雲の画像を分類する

Genomics

Cloud Life Sciences(旧称 Google Genomics)を使用して、生物医学データを大規模に処理する方法を学習します。

Cloud AI Platform

ローカルと AI Platform の両方で TensorFlow 2.x のモデル トレーニングの実践演習を行います。トレーニングした後、モデルを AI Platform にデプロイしてデータを予測する方法を学びます。

画像解析と分類

Cloud Vision API を使用すると、高度な機械学習モデルをシンプルな REST API にカプセル化し、画像の内容を把握することができます。Vision API に画像を送信し、物体、顔、ランドマークを検出することを確認します。

金融サービス

Google Cloud の ML テクノロジー(特にディープ ラーニング)は、時系列分析の大きな可能性を秘めています。時系列の精度が高くなり、オーバーラップが始まると、機械学習は信号とノイズを分離する方式を提供します。

  • チュートリアル - HTCondor と Compute Engine を使用したポートフォリオ リスクの分析

メディアとレンダリング

Google Cloud を使用して OpenCue レンダリング管理システムを Linux 仮想マシン(VM)にデプロイする方法を学びます。

コミュニティに参加

Google Cloud クレジットを受け取った研究者はすべて、オンライン研究者コミュニティに追加されます。研究者はリサーチ イノベーター プログラムに申し込むこともできます。

研究者コミュニティ

ラボやクラスで Google Cloud を使用している他の教職員や研究者のコミュニティにご参加ください。Google Cloud クレジットの受け取りについて確認と承認がされている研究者のみが参加できます。オンボーディングに関するメールで参加するためのリンクをご確認ください。学校から提供されたメールアドレスを使用してアクセス権をリクエストすることもできます。

Research Innovators

Google Cloud で科学的ブレークスルーに取り組んでいる研究者の世界的なコミュニティにご参加ください。リサーチ イノベーターは、専門能力開発やその他の特典を利用できます。現在は申し込みを受け付けていませんが、プログラムの詳細を確認して、初回のコホートについて知ることができます。また、申し込みが開始されたときに通知を受け取るようにすることもできます。

Google Cloud で Flywheel を実行することで時間とお金を節約していますが、最も重要なのは、達成できる再現性です。世界中の人々の利益のために私たちの研究を共有できるということ、それは私にとって科学の核心につながるものです。

スタンフォード大学学部教授兼 CNI 担当ディレクター Brian Wandell 博士

全文を読む

次のステップ

学術研究用に最大 5,000 ドルの Google Cloud クレジットを無料で受け取る申請をしましょう。

Google Cloud
  • ‪English‬
  • ‪Deutsch‬
  • ‪Español‬
  • ‪Español (Latinoamérica)‬
  • ‪Français‬
  • ‪Indonesia‬
  • ‪Italiano‬
  • ‪Português (Brasil)‬
  • ‪简体中文‬
  • ‪繁體中文‬
  • ‪日本語‬
  • ‪한국어‬
コンソール
  • Google Cloud プロダクト
  • 100 種類を超えるプロダクトをご用意しています。新規のお客様には、ワークロードの実行、テスト、デプロイができる無料クレジット $300 分を差し上げます。また、すべてのお客様に 25 以上のプロダクトを無料でご利用いただけます(毎月の使用量上限があります)。
Google Cloud