Abfragepaginierung

Abfrage ausführen und Zeilen mithilfe der automatischen Paginierung abrufen.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Java in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableResult;

// Sample to run query with pagination.
public class QueryPagination {

  public static void main(String[] args) {
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String query =
        "SELECT name, SUM(number) as total_people"
            + " FROM `bigquery-public-data.usa_names.usa_1910_2013`"
            + " GROUP BY name"
            + " ORDER BY total_people DESC"
            + " LIMIT 100";
    queryPagination(datasetName, tableName, query);
  }

  public static void queryPagination(String datasetName, String tableName, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      QueryJobConfiguration queryConfig =
          QueryJobConfiguration.newBuilder(query)
              // save results into a table.
              .setDestinationTable(tableId)
              .build();

      bigquery.query(queryConfig);

      TableResult results =
          bigquery.listTableData(tableId, BigQuery.TableDataListOption.pageSize(20));

      // First Page
      results
          .getValues()
          .forEach(row -> row.forEach(val -> System.out.printf("%s,\n", val.toString())));

      while (results.hasNextPage()) {
        // Remaining Pages
        results = results.getNextPage();
        results
            .getValues()
            .forEach(row -> row.forEach(val -> System.out.printf("%s,\n", val.toString())));
      }

      System.out.println("Query pagination performed successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Query not performed \n" + e.toString());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Node.js API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

// Import the Google Cloud client library using default credentials
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryPagination() {
  // Run a query and get rows using automatic pagination.

  const query = `SELECT name, SUM(number) as total_people
  FROM \`bigquery-public-data.usa_names.usa_1910_2013\`
  GROUP BY name
  ORDER BY total_people DESC
  LIMIT 100`;

  // Run the query as a job.
  const [job] = await bigquery.createQueryJob(query);

  // Wait for job to complete and get rows.
  const [rows] = await job.getQueryResults();

  console.log('Query results:');
  rows.forEach(row => {
    console.log(`name: ${row.name}, ${row.total_people} total people`);
  });
}
queryPagination();

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

query = """
    SELECT name, SUM(number) as total_people
    FROM `bigquery-public-data.usa_names.usa_1910_2013`
    GROUP BY name
    ORDER BY total_people DESC
"""
query_job = client.query(query)  # Make an API request.
query_job.result()  # Wait for the query to complete.

# Get the destination table for the query results.
#
# All queries write to a destination table. If a destination table is not
# specified, the BigQuery populates it with a reference to a temporary
# anonymous table after the query completes.
destination = query_job.destination

# Get the schema (and other properties) for the destination table.
#
# A schema is useful for converting from BigQuery types to Python types.
destination = client.get_table(destination)

# Download rows.
#
# The client library automatically handles pagination.
print("The query data:")
rows = client.list_rows(destination, max_results=20)
for row in rows:
    print("name={}, count={}".format(row["name"], row["total_people"]))

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.