Modell exportieren

Ein vorhandenes Modell in einen vorhandenen Cloud Storage-Bucket exportieren

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von C# in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery C# API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.


using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryExtractModel
{
    public void ExtractModel(string projectId, string datasetId, string modelId, string destinationUri)
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        BigQueryJob job = client.CreateModelExtractJob(
            projectId: projectId,
            datasetId: datasetId,
            modelId: modelId,
            destinationUri: destinationUri
        );
        job = job.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.
        System.IO.File.AppendAllText("log.txt", $"Exported model to {destinationUri}");
        Console.Write($"Exported model to {destinationUri}");
    }
}

Go

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Go-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Go API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// exportModel demonstrates how to export an existing
// BigQuery ML Model to Google Cloud Storage.
func exportModel(projectID, datasetID, modelID, gcsURI string) error {
	// projectID := "my-project-id"
	// datasetID := "dataset-id"
	// modelID := "model-id"
	// gcsURI := "gs://mybucket/path/to/model"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference(gcsURI)

	extractor := client.DatasetInProject(projectID, datasetID).Model(modelID).ExtractorTo(gcsRef)
	// You can choose to run the job in a specific location for more complex data locality scenarios.
	// Ex: In this example, source dataset and GCS bucket are in the US.
	extractor.Location = "US"

	job, err := extractor.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}
	if err := status.Err(); err != nil {
		return err
	}
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.ExtractJobConfiguration;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.ModelId;

// Sample to extract model to GCS bucket
public class ExtractModel {

  public static void main(String[] args) throws InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectName = "bigquery-public-data";
    String datasetName = "samples";
    String modelName = "model";
    String bucketName = "MY-BUCKET-NAME";
    String destinationUri = "gs://" + bucketName + "/path/to/file";
    extractModel(projectName, datasetName, modelName, destinationUri);
  }

  public static void extractModel(
      String projectName, String datasetName, String modelName, String destinationUri)
      throws InterruptedException {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      ModelId modelId = ModelId.of(projectName, datasetName, modelName);

      ExtractJobConfiguration extractConfig =
          ExtractJobConfiguration.newBuilder(modelId, destinationUri).build();

      Job job = bigquery.create(JobInfo.of(extractConfig));

      // Blocks until this job completes its execution, either failing or succeeding.
      Job completedJob = job.waitFor();
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to extract due to an error: \n" + job.getStatus().getError());
        return;
      }
      System.out.println("Model extract successful");
    } catch (BigQueryException ex) {
      System.out.println("Model extraction job was interrupted. \n" + ex.toString());
    }
  }
}

Ruby

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Ruby-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Ruby API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

require "google/cloud/bigquery"

##
# Exports a model to a Google Cloud Storage bucket.
#
# @param dataset_id [String] The ID of the dataset that contains the model.
# @param model_id   [String] The ID of the model to export.
# @param destination_uri [String] The Google Cloud Storage bucket to export the model to.
def export_model dataset_id, model_id, destination_uri
  bigquery = Google::Cloud::Bigquery.new
  dataset = bigquery.dataset dataset_id
  model = dataset.model model_id

  puts "Extracting model #{model.model_id} to #{destination_uri}"
  job = model.extract_job destination_uri
  job.wait_until_done!

  if job.failed?
    puts "Error extracting model: #{job.error}"
  else
    puts "Model extracted successfully"
  end
end

Weitere Informationen

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.