Ansicht erstellen

Mit Sammlungen den Überblick behalten Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.

Ansicht in einem Dataset erstellen

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Go in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Go API.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// createView demonstrates creation of a BigQuery logical view.
func createView(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	meta := &bigquery.TableMetadata{
		// This example shows how to create a view of the shakespeare sample dataset, which
		// provides word frequency information.  This view restricts the results to only contain
		// results for works that contain the "king" in the title, e.g. King Lear, King Henry V, etc.
		ViewQuery: "SELECT word, word_count, corpus, corpus_date FROM `bigquery-public-data.samples.shakespeare` WHERE corpus LIKE '%king%'",
	}
	if err := client.Dataset(datasetID).Table(tableID).Create(ctx, meta); err != nil {
		return err
	}
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;
import com.google.cloud.bigquery.ViewDefinition;

// Sample to create a view
public class CreateView {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String viewName = "MY_VIEW_NAME";
    String query =
        String.format(
            "SELECT TimestampField, StringField, BooleanField FROM %s.%s", datasetName, tableName);
    createView(datasetName, viewName, query);
  }

  public static void createView(String datasetName, String viewName, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, viewName);

      ViewDefinition viewDefinition =
          ViewDefinition.newBuilder(query).setUseLegacySql(false).build();

      bigquery.create(TableInfo.of(tableId, viewDefinition));
      System.out.println("View created successfully");
    } catch (BigQueryException e) {
      System.out.println("View was not created. \n" + e.toString());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Node.js API.

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createView() {
  // Creates a new view named "my_shared_view" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const myDatasetId = "my_dataset"
  // const myTableId = "my_table"
  // const projectId = "bigquery-public-data";
  // const sourceDatasetId = "usa_names"
  // const sourceTableId = "usa_1910_current";
  const myDataset = await bigquery.dataset(myDatasetId);

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    view: `SELECT name
    FROM \`${projectId}.${sourceDatasetId}.${sourceTableId}\`
    LIMIT 10`,
  };

  // Create a new view in the dataset
  const [view] = await myDataset.createTable(myTableId, options);

  console.log(`View ${view.id} created.`);
}

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

from google.cloud import bigquery

client = bigquery.Client()

view_id = "my-project.my_dataset.my_view"
source_id = "my-project.my_dataset.my_table"
view = bigquery.Table(view_id)

# The source table in this example is created from a CSV file in Google
# Cloud Storage located at
# `gs://cloud-samples-data/bigquery/us-states/us-states.csv`. It contains
# 50 US states, while the view returns only those states with names
# starting with the letter 'W'.
view.view_query = f"SELECT name, post_abbr FROM `{source_id}` WHERE name LIKE 'W%'"

# Make an API request to create the view.
view = client.create_table(view)
print(f"Created {view.table_type}: {str(view.reference)}")

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.