Creare una tabella in cluster

Crea una tabella in cluster.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione Go riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Go.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import (
	"context"
	"fmt"
	"time"

	"cloud.google.com/go/bigquery"
)

// createTableClustered demonstrates creating a BigQuery table with advanced properties like
// partitioning and clustering features.
func createTableClustered(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "timestamp", Type: bigquery.TimestampFieldType},
		{Name: "origin", Type: bigquery.StringFieldType},
		{Name: "destination", Type: bigquery.StringFieldType},
		{Name: "amount", Type: bigquery.NumericFieldType},
	}
	metaData := &bigquery.TableMetadata{
		Schema: sampleSchema,
		TimePartitioning: &bigquery.TimePartitioning{
			Field:      "timestamp",
			Expiration: 90 * 24 * time.Hour,
		},
		Clustering: &bigquery.Clustering{
			Fields: []string{"origin", "destination"},
		},
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metaData); err != nil {
		return err
	}
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Java.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Clustering;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;
import com.google.cloud.bigquery.TimePartitioning;
import com.google.common.collect.ImmutableList;
import java.util.List;

public class CreateClusteredTable {
  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING),
            Field.of("date", StandardSQLTypeName.DATE));
    createClusteredTable(datasetName, tableName, schema, ImmutableList.of("name", "post_abbr"));
  }

  public static void createClusteredTable(
      String datasetName, String tableName, Schema schema, List<String> clusteringFields) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      TimePartitioning partitioning = TimePartitioning.of(TimePartitioning.Type.DAY);
      // Clustering fields will be consisted of fields mentioned in the schema.
      // BigQuery supports clustering for both partitioned and non-partitioned tables.
      Clustering clustering = Clustering.newBuilder().setFields(clusteringFields).build();

      StandardTableDefinition tableDefinition =
          StandardTableDefinition.newBuilder()
              .setSchema(schema)
              .setTimePartitioning(partitioning)
              .setClustering(clustering)
              .build();
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Clustered table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Clustered table was not created. \n" + e.toString());
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Node.js.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createTableClustered() {
  // Creates a new clustered table named "my_table" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";
  const schema = 'name:string, city:string, zipcode:integer';

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    clustering: {
      fields: ['city', 'zipcode'],
    },
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);
  console.log(`Table ${table.id} created with clustering:`);
  console.log(table.metadata.clustering);
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Python.

Per autenticarti in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING"),
    bigquery.SchemaField("city", "STRING"),
    bigquery.SchemaField("zipcode", "INTEGER"),
]

table = bigquery.Table(table_id, schema=schema)
table.clustering_fields = ["city", "zipcode"]
table = client.create_table(table)  # Make an API request.
print(
    "Created clustered table {}.{}.{}".format(
        table.project, table.dataset_id, table.table_id
    )
)

Terraform

Per scoprire come applicare o rimuovere una configurazione Terraform, consulta Comandi Terraform di base. Per ulteriori informazioni, consulta la Terraform documentazione di riferimento del provider.

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "mytable"
  deletion_protection = false # set to "true" in production

  clustering = ["ID", "Created"]

  schema = <<EOF
[
  {
    "name": "ID",
    "type": "INT64",
    "description": "Item ID"
  },
  {
    "name": "Item",
    "type": "STRING",
    "mode": "NULLABLE"
  },
 {
   "name": "Created",
   "type": "TIMESTAMP"
 }
]
EOF

}

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud, consulta il browser di esempi di Google Cloud.