Creare una vista materializzata

Crea una vista materializzata.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione Go riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Go.

Per autenticarti in BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// createMaterializedView demonstrates generated a materialized view based on an existing
// base table.
func createMaterializedView(projectID, datasetID, baseTableID, viewID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// baseTableID := "mytableid"
	// viewID := "myviewid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	// Get an appropriately escaped table identifier suitable for use in a standard SQL query.
	tableStr, err := client.Dataset(datasetID).Table(baseTableID).Identifier(bigquery.StandardSQLID)
	if err != nil {
		return fmt.Errorf("couldn't construct identifier: %w", err)
	}

	metaData := &bigquery.TableMetadata{
		MaterializedView: &bigquery.MaterializedViewDefinition{
			Query: fmt.Sprintf(`SELECT MAX(TimestampField) AS TimestampField, StringField, 
					  MAX(BooleanField) AS BooleanField FROM %s GROUP BY StringField`, tableStr),
		}}

	viewRef := client.Dataset(datasetID).Table(viewID)
	if err := viewRef.Create(ctx, metaData); err != nil {
		return err
	}
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Java.

Per autenticarti in BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.MaterializedViewDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

// Sample to create materialized view
public class CreateMaterializedView {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String materializedViewName = "MY_MATERIALIZED_VIEW_NAME";
    String query =
        String.format(
            "SELECT MAX(TimestampField) AS TimestampField, StringField, "
                + "MAX(BooleanField) AS BooleanField "
                + "FROM %s.%s GROUP BY StringField",
            datasetName, tableName);
    createMaterializedView(datasetName, materializedViewName, query);
  }

  public static void createMaterializedView(
      String datasetName, String materializedViewName, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, materializedViewName);

      MaterializedViewDefinition materializedViewDefinition =
          MaterializedViewDefinition.newBuilder(query).build();

      bigquery.create(TableInfo.of(tableId, materializedViewDefinition));
      System.out.println("Materialized view created successfully");
    } catch (BigQueryException e) {
      System.out.println("Materialized view was not created. \n" + e.toString());
    }
  }
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo di BigQuery con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API BigQuery Python.

Per autenticarti in BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.

from google.cloud import bigquery

bigquery_client = bigquery.Client()

view_id = "my-project.my_dataset.my_materialized_view"
base_table_id = "my-project.my_dataset.my_base_table"
view = bigquery.Table(view_id)
view.mview_query = f"""
SELECT product_id, SUM(clicks) AS sum_clicks
FROM  `{base_table_id}`
GROUP BY 1
"""

# Make an API request to create the materialized view.
view = bigquery_client.create_table(view)
print(f"Created {view.table_type}: {str(view.reference)}")

Terraform

Per scoprire come applicare o rimuovere una configurazione Terraform, consulta Comandi Terraform di base. Per ulteriori informazioni, consulta la Terraform documentazione di riferimento del provider.

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "my_materialized_view"
  deletion_protection = false # set to "true" in production

  materialized_view {
    query                            = "SELECT ID, description, date_created FROM `myproject.orders.items`"
    enable_refresh                   = "true"
    refresh_interval_ms              = 172800000 # 2 days
    allow_non_incremental_definition = "false"
  }

}

Passaggi successivi

Per cercare e filtrare i sample di codice per altri Google Cloud prodotti, consulta il Google Cloud browser di sample.