This document shows you how to tune your indexes to achieve faster query performance and better recall.
Analyze your queries
Use the EXPLAIN ANALYZE
command to analyze your query insights as shown in the following example SQL query.
EXPLAIN ANALYZE SELECT result-column FROM my-table
ORDER BY EMBEDDING_COLUMN ::vector
USING INDEX my-scann-index
<-> embedding('textembedding-gecko@003', 'What is a database?')
LIMIT 1;
The example response QUERY PLAN
includes information such as the time taken, the number of rows scanned or returned, and the resources used.
Limit (cost=0.42..15.27 rows=1 width=32) (actual time=0.106..0.132 rows=1 loops=1)
-> Index Scan using my-scann-index on my-table (cost=0.42..858027.93 rows=100000 width=32) (actual time=0.105..0.129 rows=1 loops=1)
Order By: (embedding_column <-> embedding('textembedding-gecko@003', 'What is a database?')::vector(768))
Limit value: 1
Planning Time: 0.354 ms
Execution Time: 0.141 ms
View vector index metrics
You can use the vector index metrics to review performance of your vector index, identify areas for improvement, and tune your index based on the metrics, if needed.
To view all vector index metrics, run the following SQL query, which uses the
pg_stat_ann_indexes
view:
SELECT * FROM pg_stat_ann_indexes;
For more information about the complete list of metrics, see Vector index metrics.