NVIDIA e Google Cloud

A NVIDIA e o Google Cloud oferecem soluções otimizadas para aceleradores que abordam as cargas de trabalho mais exigentes, incluindo machine learning, computação de alto desempenho, análise de dados, gráficos e cargas de trabalho de jogos.

Vantagens

O poder da computação acelerada por NVIDIA em escala no Google Cloud

Maior desempenho para diversas cargas de trabalho

Com as GPUs NVIDIA mais recentes no Google Cloud, é possível provisionar facilmente instâncias do Compute Engine com NVIDIA H100, A100, L4, T4, P100, P4 e V100 para acelerar um amplo conjunto de cargas de trabalho exigentes.

Reduza os custos com o faturamento por segundo

Os preços por segundo do Google Cloud significam que você paga apenas pelo que precisa, com um desconto mensal de até 30% aplicado automaticamente. Economize nos custos iniciais enquanto aproveita o mesmo tempo de atividade e desempenho escalonável.

Otimize as cargas de trabalho com configurações personalizadas de máquina

Otimize suas cargas de trabalho configurando com precisão uma instância com a proporção exata de processadores, memória e GPUs NVIDIA em vez de modificar suas cargas de trabalho para se adequar às configurações limitadas do sistema.

Principais recursos

Tecnologias NVIDIA no Google Cloud

VMs A3 com tecnologia de GPUs NVIDIA H100 Tensor Core

As VMs A3, com tecnologia de GPUs NVIDIA H100 Tensor Core, são personalizadas para treinar e atender cargas de trabalho de IA generativa e LLMs especialmente exigentes. A combinação de GPUs NVIDIA com as tecnologias de infraestrutura líderes do Google Cloud oferece escala e desempenho massivo e é um grande salto em recursos de supercomputação.

Mais informações

VMs A2 com tecnologia de GPUs NVIDIA A100® Tensor Core

As VMs A2 otimizadas para aceleradores são baseadas na GPU NVIDIA Ampere A100 Core. Cada GPU A100 oferece até 20 vezes o desempenho computacional da geração anterior. Essas VMs foram projetadas para oferecer aceleração em todas as escalas da IA, análise de dados e computação de alto desempenho para enfrentar os maiores desafios da computação.

Mais informações

VMs G2 com tecnologia de GPUs NVIDIA L4 Tensor Core

A G2 foi a primeira VM em nuvem do setor com a GPU NVIDIA L4 Tensor Core recém-anunciada e foi criada especificamente para grandes cargas de trabalho de IA de inferência, como a IA generativa. A G2 oferece um desempenho inovador por dólar para cargas de trabalho de inferência de IA. Como uma GPU universal, a G2 oferece melhorias de desempenho significativas em cargas de trabalho de HPC, gráficos e transcodificação de vídeo.

Mais informações

Escalonamento automático com o Google Kubernetes Engine

Usando o Google Kubernetes Engine (GKE), é possível criar clusters facilmente com GPUs NVIDIA sob demanda, balancear carga e minimizar custos operacionais ao escalonar automaticamente os recursos da GPU para mais ou para menos. Com suporte para GPUs de várias instâncias (MIG) nas GPUs NVIDIA A100, o GKE agora pode provisionar a aceleração de GPU com o tamanho certo, com granularidade mais refinada para cargas de trabalho de inferência de IA de vários usuários e vários modelos.

NVIDIA CloudXR™ com estações de trabalho virtuais RTX

A NVIDIA CloudXR, uma inovação criada com a tecnologia NVIDIA RTXTM, torna a XR de alta qualidade acessível no Google Cloud Marketplace com a NVIDIA RTX Virtual Workstation como uma imagem de máquina virtual (VMI). Os usuários podem configurar, escalonar e consumir facilmente experiências imersivas de alta qualidade e fazer streaming de fluxos de trabalho de XR com a nuvem.

Tudo pronto para começar? Fale conosco

Documentação

Recursos técnicos para implantar a tecnologia da NVIDIA no Google Cloud

Google Cloud Basics

GPUs no Compute Engine

O Compute Engine fornece GPUs que podem ser adicionadas às suas instâncias de máquinas virtuais. Saiba o que pode ser feito com as GPUs e que tipos de hardware de GPU estão disponíveis.
Google Cloud Basics

Como usar GPUs para treinar modelos na nuvem

Acelere o processo de treinamento para muitos modelos de aprendizado profundo, como classificação de imagens, análise de vídeo e processamento de linguagem natural.

Tutorial

GPUs no Google Kubernetes Engine

Aprenda a usar os aceleradores de hardware da GPU nos nós dos clusters do Google Kubernetes Engine.
Google Cloud Basics

Como anexar GPUs a clusters do Dataproc

Anexe GPUs aos nós mestres e de trabalho do Compute Engine em um cluster do Dataproc para acelerar cargas de trabalho específicas, como machine learning e processamento de dados.

Não encontrou o que procura?

Vá além

Qual a solução que você procura? Os especialistas do Google Cloud ajudam você a encontrar a melhor solução.

Google Cloud