ウェブ エンティティとページを検出する

コレクションでコンテンツを整理 必要に応じて、コンテンツの保存と分類を行います。

ウェブ検出は、画像に対するウェブ参照を検出します。

カーニバルの画像
画像クレジット: Quinten de GraafUnsplash より抜粋

カテゴリ レスポンス
ウェブ エンティティ
  • entityId: / m/02p7_j8 score: 1.3225499、description: Carnival in Rio de Janeiro
  • entityId: /m/06gmr、score: 1.1684971、description: Rio de Janeiro
  • entityId: /m/04cx88、score: 1.05945、description: Brazilian Carnival
...
完全一致画像
  • url: https://1000lugaresparair.files.wordpress.com/2017/11/quinten-de-graaf-278848.jpg
  • url: https://freewalkingtourrotterdam.com/wp-content/uploads/2017/07/quinten-de-graaf-278848.jpg
...
部分一致画像
  • url: https://www.linnanneito.fi/wp-content/uploads/sambakarnevaali-riossa.jpg
  • url: https://static.airhelp.com/wp-content/uploads/2019/02/26105557/two-women-in-carnival-costumes.jpg
...
画像が一致するページ
  • url: https://travelnoire.com/best-carnival-celebrations-around-the-world/、
    pageTitle: Best \u003cb\u003eCarnival\u003c/b\u003e Celebrations Around The World - Travel Noire、
    fullMatchingImages: [{url: https://travelnoire.com/wp-content/uploads/2019/02/quinten-de-graaf-278848-unsplash.jpg}]
  • url: https://bespokebrazil.com/rio-carnival-2019/,
    pageTitle: Visit \u003cb\u003eRio Carnival 2019\u003c/b\u003e with the Brazil Specialists - Bespoke Brazil,
    partialMatchingImages: [{ url: https://bespoke-brazil-2018-bespokebrazil.netdna-ssl.com/wp-content/uploads/2019/01/Carnival-1.jpg}]
...
類似の画像
  • url: https://www.brazilbookers.com/_images/photos/rio-carnival-images/rio-carnival-2016-carnival-date.jpg
  • url: https://image.redbull.com/rbcom/010/2017-02-08/1331843859949_3/0100/0/1/watch-rio-carnival-2017-live-on-red-bull-tv.jpg
...
最良の推測ラベル rio carnival 2019 dancers

ウェブ検出リクエスト

Google Cloud プロジェクトと認証のセットアップ

ローカル画像でウェブ エンティティを検出する

Vision API を使用して、ローカル画像ファイルに特徴検出を実行できます。

REST リクエストの場合は、リクエストの本文で画像ファイルのコンテンツを base64 エンコード文字列として送信します。

gcloud とクライアント ライブラリ リクエストの場合は、リクエストにローカル イメージへのパスを指定します。

REST

リクエストのデータを使用する前に、次のように置き換えます。

  • BASE64_ENCODED_IMAGE: バイナリ画像データの base64 表現(ASCII 文字列)。これは次のような文字列になります。
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    詳細については、base64 エンコードをご覧ください。
  • RESULTS_INT:(省略可)返される結果の整数値。"maxResults" フィールドとその値を省略した場合、API はデフォルト値の 10 を返します。このフィールドは、TEXT_DETECTIONDOCUMENT_TEXT_DETECTIONCROP_HINTS の各機能タイプには適用されません。
  • PROJECT_ID: Google Cloud プロジェクト ID。

HTTP メソッドと URL:

POST https://vision.googleapis.com/v1/images:annotate

JSON 本文のリクエスト:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "WEB_DETECTION"
        },
      ]
    }
  ]
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

リクエストが成功すると、サーバーは 200 OK HTTP ステータス コードと JSON 形式のレスポンスを返します。

レスポンス:

Go

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。詳細については、Vision Go API のリファレンス ドキュメントをご覧ください。


// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWeb(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	web, err := client.DetectWeb(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Web properties:")
	if len(web.FullMatchingImages) != 0 {
		fmt.Fprintln(w, "\tFull image matches:")
		for _, full := range web.FullMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", full.Url)
		}
	}
	if len(web.PagesWithMatchingImages) != 0 {
		fmt.Fprintln(w, "\tPages with this image:")
		for _, page := range web.PagesWithMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", page.Url)
		}
	}
	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "\tEntities:")
		fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}
	if len(web.BestGuessLabels) != 0 {
		fmt.Fprintln(w, "\tBest guess labels:")
		for _, label := range web.BestGuessLabels {
			fmt.Fprintf(w, "\t\t%s\n", label.Label)
		}
	}

	return nil
}

Java

このサンプルを試す前に、Vision API クイックスタート: クライアント ライブラリの使用の Java の設定手順を完了してください。詳細については、Vision API Java のリファレンス ドキュメントをご覧ください。


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.WebDetection;
import com.google.cloud.vision.v1.WebDetection.WebEntity;
import com.google.cloud.vision.v1.WebDetection.WebImage;
import com.google.cloud.vision.v1.WebDetection.WebLabel;
import com.google.cloud.vision.v1.WebDetection.WebPage;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectWebDetections {

  public static void detectWebDetections() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectWebDetections(filePath);
  }

  // Finds references to the specified image on the web.
  public static void detectWebDetections(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Type.WEB_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // Search the web for usages of the image. You could use these signals later
        // for user input moderation or linking external references.
        // For a full list of available annotations, see http://g.co/cloud/vision/docs
        WebDetection annotation = res.getWebDetection();
        System.out.println("Entity:Id:Score");
        System.out.println("===============");
        for (WebEntity entity : annotation.getWebEntitiesList()) {
          System.out.println(
              entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
        }
        for (WebLabel label : annotation.getBestGuessLabelsList()) {
          System.out.format("%nBest guess label: %s", label.getLabel());
        }
        System.out.println("%nPages with matching images: Score%n==");
        for (WebPage page : annotation.getPagesWithMatchingImagesList()) {
          System.out.println(page.getUrl() + " : " + page.getScore());
        }
        System.out.println("%nPages with partially matching images: Score%n==");
        for (WebImage image : annotation.getPartialMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with fully matching images: Score%n==");
        for (WebImage image : annotation.getFullMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with visually similar images: Score%n==");
        for (WebImage image : annotation.getVisuallySimilarImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
      }
    }
  }
}

Node.js

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vision Node.js API のリファレンス ドキュメントをご覧ください。


// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Detect similar images on the web to a local file
const [result] = await client.webDetection(fileName);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
  console.log(
    `Full matches found: ${webDetection.fullMatchingImages.length}`
  );
  webDetection.fullMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.partialMatchingImages.length) {
  console.log(
    `Partial matches found: ${webDetection.partialMatchingImages.length}`
  );
  webDetection.partialMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.webEntities.length) {
  console.log(`Web entities found: ${webDetection.webEntities.length}`);
  webDetection.webEntities.forEach(webEntity => {
    console.log(`  Description: ${webEntity.description}`);
    console.log(`  Score: ${webEntity.score}`);
  });
}

if (webDetection.bestGuessLabels.length) {
  console.log(
    `Best guess labels found: ${webDetection.bestGuessLabels.length}`
  );
  webDetection.bestGuessLabels.forEach(label => {
    console.log(`  Label: ${label.label}`);
  });
}

Python

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vision Python API のリファレンス ドキュメントをご覧ください。

def detect_web(path):
    """Detects web annotations given an image."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.web_detection(image=image)
    annotations = response.web_detection

    if annotations.best_guess_labels:
        for label in annotations.best_guess_labels:
            print('\nBest guess label: {}'.format(label.label))

    if annotations.pages_with_matching_images:
        print('\n{} Pages with matching images found:'.format(
            len(annotations.pages_with_matching_images)))

        for page in annotations.pages_with_matching_images:
            print('\n\tPage url   : {}'.format(page.url))

            if page.full_matching_images:
                print('\t{} Full Matches found: '.format(
                       len(page.full_matching_images)))

                for image in page.full_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

            if page.partial_matching_images:
                print('\t{} Partial Matches found: '.format(
                       len(page.partial_matching_images)))

                for image in page.partial_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

    if annotations.web_entities:
        print('\n{} Web entities found: '.format(
            len(annotations.web_entities)))

        for entity in annotations.web_entities:
            print('\n\tScore      : {}'.format(entity.score))
            print(u'\tDescription: {}'.format(entity.description))

    if annotations.visually_similar_images:
        print('\n{} visually similar images found:\n'.format(
            len(annotations.visually_similar_images)))

        for image in annotations.visually_similar_images:
            print('\tImage url    : {}'.format(image.url))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の Vision リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の Vision リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の Vision リファレンス ドキュメントをご覧ください。

リモート画像でウェブ エンティティを検出する

Vision API を使用すると、Cloud Storage またはウェブ上にあるリモート画像ファイルに特徴検出を実行できます。リモート ファイル リクエストを送信するには、リクエストの本文でファイルのウェブ URL または Cloud Storage URI を指定します。

REST

リクエストのデータを使用する前に、次のように置き換えます。

  • CLOUD_STORAGE_IMAGE_URI: Cloud Storage バケット内の有効な画像ファイルへのパス。少なくとも、ファイルに対する読み取り権限が必要です。たとえば次のように指定します。
    • gs://cloud-samples-data/vision/web/carnaval.jpeg
  • RESULTS_INT:(省略可)返される結果の整数値。"maxResults" フィールドとその値を省略した場合、API はデフォルト値の 10 を返します。このフィールドは、TEXT_DETECTIONDOCUMENT_TEXT_DETECTIONCROP_HINTS の各機能タイプには適用されません。
  • PROJECT_ID: Google Cloud プロジェクト ID。

HTTP メソッドと URL:

POST https://vision.googleapis.com/v1/images:annotate

JSON 本文のリクエスト:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "WEB_DETECTION"
        },
      ]
    }
  ]
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

リクエストが成功すると、サーバーは 200 OK HTTP ステータス コードと JSON 形式のレスポンスを返します。

レスポンス:

Go

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。詳細については、Vision Go API のリファレンス ドキュメントをご覧ください。


// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWebURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	web, err := client.DetectWeb(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Web properties:")
	if len(web.FullMatchingImages) != 0 {
		fmt.Fprintln(w, "\tFull image matches:")
		for _, full := range web.FullMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", full.Url)
		}
	}
	if len(web.PagesWithMatchingImages) != 0 {
		fmt.Fprintln(w, "\tPages with this image:")
		for _, page := range web.PagesWithMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", page.Url)
		}
	}
	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "\tEntities:")
		fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}
	if len(web.BestGuessLabels) != 0 {
		fmt.Fprintln(w, "\tBest guess labels:")
		for _, label := range web.BestGuessLabels {
			fmt.Fprintf(w, "\t\t%s\n", label.Label)
		}
	}

	return nil
}

Java

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vision Java API のリファレンス ドキュメントをご覧ください。


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.WebDetection;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectWebDetectionsGcs {

  public static void detectWebDetectionsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectWebDetectionsGcs(filePath);
  }

  // Detects whether the remote image on Google Cloud Storage has features you would want to
  // moderate.
  public static void detectWebDetectionsGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.WEB_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // Search the web for usages of the image. You could use these signals later
        // for user input moderation or linking external references.
        // For a full list of available annotations, see http://g.co/cloud/vision/docs
        WebDetection annotation = res.getWebDetection();
        System.out.println("Entity:Id:Score");
        System.out.println("===============");
        for (WebDetection.WebEntity entity : annotation.getWebEntitiesList()) {
          System.out.println(
              entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
        }
        for (WebDetection.WebLabel label : annotation.getBestGuessLabelsList()) {
          System.out.format("%nBest guess label: %s", label.getLabel());
        }
        System.out.println("%nPages with matching images: Score%n==");
        for (WebDetection.WebPage page : annotation.getPagesWithMatchingImagesList()) {
          System.out.println(page.getUrl() + " : " + page.getScore());
        }
        System.out.println("%nPages with partially matching images: Score%n==");
        for (WebDetection.WebImage image : annotation.getPartialMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with fully matching images: Score%n==");
        for (WebDetection.WebImage image : annotation.getFullMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with visually similar images: Score%n==");
        for (WebDetection.WebImage image : annotation.getVisuallySimilarImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
      }
    }
  }
}

Node.js

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vision Node.js API のリファレンス ドキュメントをご覧ください。


// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Detect similar images on the web to a remote file
const [result] = await client.webDetection(`gs://${bucketName}/${fileName}`);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
  console.log(
    `Full matches found: ${webDetection.fullMatchingImages.length}`
  );
  webDetection.fullMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.partialMatchingImages.length) {
  console.log(
    `Partial matches found: ${webDetection.partialMatchingImages.length}`
  );
  webDetection.partialMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.webEntities.length) {
  console.log(`Web entities found: ${webDetection.webEntities.length}`);
  webDetection.webEntities.forEach(webEntity => {
    console.log(`  Description: ${webEntity.description}`);
    console.log(`  Score: ${webEntity.score}`);
  });
}

if (webDetection.bestGuessLabels.length) {
  console.log(
    `Best guess labels found: ${webDetection.bestGuessLabels.length}`
  );
  webDetection.bestGuessLabels.forEach(label => {
    console.log(`  Label: ${label.label}`);
  });
}

Python

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vision Python API のリファレンス ドキュメントをご覧ください。

def detect_web_uri(uri):
    """Detects web annotations in the file located in Google Cloud Storage."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.web_detection(image=image)
    annotations = response.web_detection

    if annotations.best_guess_labels:
        for label in annotations.best_guess_labels:
            print('\nBest guess label: {}'.format(label.label))

    if annotations.pages_with_matching_images:
        print('\n{} Pages with matching images found:'.format(
            len(annotations.pages_with_matching_images)))

        for page in annotations.pages_with_matching_images:
            print('\n\tPage url   : {}'.format(page.url))

            if page.full_matching_images:
                print('\t{} Full Matches found: '.format(
                       len(page.full_matching_images)))

                for image in page.full_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

            if page.partial_matching_images:
                print('\t{} Partial Matches found: '.format(
                       len(page.partial_matching_images)))

                for image in page.partial_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

    if annotations.web_entities:
        print('\n{} Web entities found: '.format(
            len(annotations.web_entities)))

        for entity in annotations.web_entities:
            print('\n\tScore      : {}'.format(entity.score))
            print(u'\tDescription: {}'.format(entity.description))

    if annotations.visually_similar_images:
        print('\n{} visually similar images found:\n'.format(
            len(annotations.visually_similar_images)))

        for image in annotations.visually_similar_images:
            print('\tImage url    : {}'.format(image.url))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

gcloud CLI

ウェブ検出を行うには、次の例のように gcloud ml vision detect-web コマンドを実行します。

gcloud ml vision detect-web gs://cloud-samples-data/vision/web/carnaval.jpeg

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の Vision リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の Vision リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の Vision リファレンス ドキュメントをご覧ください。

ローカル画像で地理メタデータを使用する

Vision API は、画像ファイルのジオタグ メタデータにアクセスして、より関連性の高いウェブ エンティティやページを返すことができます。ジオタグを使用できるようにするには、リクエストに 'includeGeoResults': true を指定します。

REST

リクエストのデータを使用する前に、次のように置き換えます。

  • CLOUD_STORAGE_IMAGE_URI: Cloud Storage バケット内の有効な画像ファイルへのパス。少なくとも、ファイルに対する読み取り権限が必要です。たとえば、次のように指定します。
    • gs://cloud-samples-data/vision/web/carnaval.jpeg
  • PROJECT_ID: Google Cloud プロジェクト ID。

HTTP メソッドと URL:

POST https://vision.googleapis.com/v1/images:annotate

JSON 本文のリクエスト:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "type": "WEB_DETECTION"
        }
      ],
      "imageContext": {
        "webDetectionParams": {
          "includeGeoResults": true
          }
        }
    }
  ]
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

リクエストが成功すると、サーバーは 200 OK HTTP ステータス コードと JSON 形式のレスポンスを返します。

レスポンス:

Go

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。詳細については、Vision Go API のリファレンス ドキュメントをご覧ください。


// detectWebGeo detects geographic metadata from the Vision API for an image at the given file path.
func detectWebGeo(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	imageContext := &visionpb.ImageContext{
		WebDetectionParams: &visionpb.WebDetectionParams{
			IncludeGeoResults: true,
		},
	}
	web, err := client.DetectWeb(ctx, image, imageContext)
	if err != nil {
		return err
	}

	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "Entities:")
		fmt.Fprintln(w, "\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}

	return nil
}

Java

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vision Java API のリファレンス ドキュメントをご覧ください。


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageContext;
import com.google.cloud.vision.v1.WebDetectionParams;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.Arrays;

public class DetectWebEntitiesIncludeGeoResults {

  public static void detectWebEntitiesIncludeGeoResults() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectWebEntitiesIncludeGeoResults(filePath);
  }

  // Find web entities given a local image.
  public static void detectWebEntitiesIncludeGeoResults(String filePath) throws IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      // Read in the local image
      ByteString contents = ByteString.readFrom(new FileInputStream(filePath));

      // Build the image
      Image image = Image.newBuilder().setContent(contents).build();

      // Enable `IncludeGeoResults`
      WebDetectionParams webDetectionParams =
          WebDetectionParams.newBuilder().setIncludeGeoResults(true).build();

      // Set the parameters for the image
      ImageContext imageContext =
          ImageContext.newBuilder().setWebDetectionParams(webDetectionParams).build();

      // Create the request with the image, imageContext, and the specified feature: web detection
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder()
              .addFeatures(Feature.newBuilder().setType(Type.WEB_DETECTION))
              .setImage(image)
              .setImageContext(imageContext)
              .build();

      // Perform the request
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(Arrays.asList(request));

      // Display the results
      response.getResponsesList().stream()
          .forEach(
              r ->
                  r.getWebDetection().getWebEntitiesList().stream()
                      .forEach(
                          entity -> {
                            System.out.format("Description: %s%n", entity.getDescription());
                            System.out.format("Score: %f%n", entity.getScore());
                          }));
    }
  }
}

Node.js

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vision Node.js API のリファレンス ドキュメントをご覧ください。

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

const request = {
  image: {
    source: {
      filename: fileName,
    },
  },
  imageContext: {
    webDetectionParams: {
      includeGeoResults: true,
    },
  },
};

// Detect similar images on the web to a local file
const [result] = await client.webDetection(request);
const webDetection = result.webDetection;
webDetection.webEntities.forEach(entity => {
  console.log(`Score: ${entity.score}`);
  console.log(`Description: ${entity.description}`);
});

Python

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vision Python API のリファレンス ドキュメントをご覧ください。

def web_entities_include_geo_results(path):
    """Detects web annotations given an image, using the geotag metadata
    in the image to detect web entities."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    web_detection_params = vision.WebDetectionParams(
        include_geo_results=True)
    image_context = vision.ImageContext(
        web_detection_params=web_detection_params)

    response = client.web_detection(image=image, image_context=image_context)

    for entity in response.web_detection.web_entities:
        print('\n\tScore      : {}'.format(entity.score))
        print(u'\tDescription: {}'.format(entity.description))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

gcloud CLI

ウェブ検出を行うには、次の例のように gcloud ml vision detect-web コマンドを実行します。

gcloud ml vision detect-web gs://cloud-samples-data/vision/web/carnaval.jpeg

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の Vision リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の Vision リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の Vision リファレンス ドキュメントをご覧ください。

リモート画像で地理メタデータを使用する

Go

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。詳細については、Vision Go API のリファレンス ドキュメントをご覧ください。


// detectWebGeo detects geographic metadata from the Vision API for an image at the given file path.
func detectWebGeoURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	imageContext := &visionpb.ImageContext{
		WebDetectionParams: &visionpb.WebDetectionParams{
			IncludeGeoResults: true,
		},
	}
	web, err := client.DetectWeb(ctx, image, imageContext)
	if err != nil {
		return err
	}

	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "Entities:")
		fmt.Fprintln(w, "\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}

	return nil
}

Java

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vision Java API のリファレンス ドキュメントをご覧ください。


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageContext;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.WebDetectionParams;
import java.io.IOException;
import java.util.Arrays;

public class DetectWebEntitiesIncludeGeoResultsGcs {

  public static void detectWebEntitiesIncludeGeoResultsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectWebEntitiesIncludeGeoResultsGcs(filePath);
  }

  // Find web entities given the remote image on Google Cloud Storage.
  public static void detectWebEntitiesIncludeGeoResultsGcs(String gcsPath) throws IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      // Set the image source to the given gs uri
      ImageSource imageSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
      // Build the image
      Image image = Image.newBuilder().setSource(imageSource).build();

      // Enable `IncludeGeoResults`
      WebDetectionParams webDetectionParams =
          WebDetectionParams.newBuilder().setIncludeGeoResults(true).build();

      // Set the parameters for the image
      ImageContext imageContext =
          ImageContext.newBuilder().setWebDetectionParams(webDetectionParams).build();

      // Create the request with the image, imageContext, and the specified feature: web detection
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder()
              .addFeatures(Feature.newBuilder().setType(Feature.Type.WEB_DETECTION))
              .setImage(image)
              .setImageContext(imageContext)
              .build();

      // Perform the request
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(Arrays.asList(request));

      // Display the results
      response.getResponsesList().stream()
          .forEach(
              r ->
                  r.getWebDetection().getWebEntitiesList().stream()
                      .forEach(
                          entity -> {
                            System.out.format("Description: %s%n", entity.getDescription());
                            System.out.format("Score: %f%n", entity.getScore());
                          }));
    }
  }
}

Node.js

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vision Node.js API のリファレンス ドキュメントをご覧ください。

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

const request = {
  image: {
    source: {
      imageUri: `gs://${bucketName}/${fileName}`,
    },
  },
  imageContext: {
    webDetectionParams: {
      includeGeoResults: true,
    },
  },
};

// Detect similar images on the web to a remote file
const [result] = await client.webDetection(request);
const webDetection = result.webDetection;
webDetection.webEntities.forEach(entity => {
  console.log(`Score: ${entity.score}`);
  console.log(`Description: ${entity.description}`);
});

Python

このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vision Python API のリファレンス ドキュメントをご覧ください。

def web_entities_include_geo_results_uri(uri):
    """Detects web annotations given an image in the file located in
    Google Cloud Storage., using the geotag metadata in the image to
    detect web entities."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()

    image = vision.Image()
    image.source.image_uri = uri

    web_detection_params = vision.WebDetectionParams(
        include_geo_results=True)
    image_context = vision.ImageContext(
        web_detection_params=web_detection_params)

    response = client.web_detection(image=image, image_context=image_context)

    for entity in response.web_detection.web_entities:
        print('\n\tScore      : {}'.format(entity.score))
        print(u'\tDescription: {}'.format(entity.description))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の Vision リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の Vision リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の Vision リファレンス ドキュメントをご覧ください。

試してみる

以下のウェブ エンティティ検出をお試しください。すでに指定済みの画像(gs://cloud-samples-data/vision/web/carnaval.jpeg)を使用することも、独自の画像を指定することもできます。[実行] を選択してリクエストを送信します。

includeGeoResults を false に設定してリクエストを繰り返してみてください。

カーニバルの画像
画像クレジット: Quinten de GraafUnsplash より抜粋

リクエストの本文:

{
  "requests": [
    {
      "features": [
        {
          "type": "WEB_DETECTION"
        }
      ],
      "image": {
        "source": {
          "gcsImageUri": "gs://cloud-samples-data/vision/web/carnaval.jpeg"
        }
      },
      "imageContext": {
        "webDetectionParams": {
          "includeGeoResults": true
        }
      }
    }
  ]
}