Detect explicit content (Safe Search)

Safe Search Detection detects explicit content such as adult content or violent content within an image. This feature uses five categories (adult, spoof, medical, violence, and racy) and returns the likelihood that each is present in a given image. See the SafeSearchAnnotation page for details on these fields.

Safe Search detection requests

Set up your GCP project and authentication

Explicit content detection on a local image

The Vision API can perform feature detection on a local image file by sending the contents of the image file as a base64 encoded string in the body of your request.

REST & CMD LINE

Before using any of the request data below, make the following replacements:

  • base64-encoded-image: The base64 representation (ASCII string) of your binary image data. This string should look similar to the following string:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Visit the base64 encode topic for more information.

HTTP method and URL:

POST https://vision.googleapis.com/v1/images:annotate

Request JSON body:

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "type": "SAFE_SEARCH_DETECTION"
        },
      ]
    }
  ]
}

To send your request, choose one of these options:

curl

Save the request body in a file called request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

Save the request body in a file called request.json, and execute the following command:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

You should receive a JSON response similar to the following:

{
  "responses": [
    {
      "safeSearchAnnotation": {
        "adult": "UNLIKELY",
        "spoof": "VERY_UNLIKELY",
        "medical": "VERY_UNLIKELY",
        "violence": "LIKELY",
        "racy": "POSSIBLE"
      }
    }
  ]
}

C#

Before trying this sample, follow the C# setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API C# API reference documentation .

// Load an image from a local file.
var image = Image.FromFile(filePath);
var client = ImageAnnotatorClient.Create();
var response = client.DetectSafeSearch(image);
Console.WriteLine("Adult: {0}", response.Adult.ToString());
Console.WriteLine("Spoof: {0}", response.Spoof.ToString());
Console.WriteLine("Medical: {0}", response.Medical.ToString());
Console.WriteLine("Violence: {0}", response.Violence.ToString());
Console.WriteLine("Racy: {0}", response.Racy.ToString());

Go

Before trying this sample, follow the Go setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Go API reference documentation .


// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearch(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	props, err := client.DetectSafeSearch(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Safe Search properties:")
	fmt.Fprintln(w, "Adult:", props.Adult)
	fmt.Fprintln(w, "Medical:", props.Medical)
	fmt.Fprintln(w, "Racy:", props.Racy)
	fmt.Fprintln(w, "Spoofed:", props.Spoof)
	fmt.Fprintln(w, "Violence:", props.Violence)

	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the Vision API Quickstart Using Client Libraries. For more information, see the Vision API Java API reference documentation.

public static void detectSafeSearch(String filePath, PrintStream out) throws Exception,
    IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  Feature feat = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
      out.printf(
          "adult: %s\nmedical: %s\nspoofed: %s\nviolence: %s\nracy: %s\n",
          annotation.getAdult(),
          annotation.getMedical(),
          annotation.getSpoof(),
          annotation.getViolence(),
          annotation.getRacy());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Node.js API reference documentation .

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs safe search detection on the local file
const [result] = await client.safeSearchDetection(fileName);
const detections = result.safeSearchAnnotation;
console.log('Safe search:');
console.log(`Adult: ${detections.adult}`);
console.log(`Medical: ${detections.medical}`);
console.log(`Spoof: ${detections.spoof}`);
console.log(`Violence: ${detections.violence}`);
console.log(`Racy: ${detections.racy}`);

PHP

Before trying this sample, follow the PHP setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API PHP API reference documentation .

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'path/to/your/image.jpg'

function detect_safe_search($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $image = file_get_contents($path);
    $response = $imageAnnotator->safeSearchDetection($image);
    $safe = $response->getSafeSearchAnnotation();

    $adult = $safe->getAdult();
    $medical = $safe->getMedical();
    $spoof = $safe->getSpoof();
    $violence = $safe->getViolence();
    $racy = $safe->getRacy();

    # names of likelihood from google.cloud.vision.enums
    $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
    'POSSIBLE', 'LIKELY', 'VERY_LIKELY'];

    printf("Adult: %s" . PHP_EOL, $likelihoodName[$adult]);
    printf("Medical: %s" . PHP_EOL, $likelihoodName[$medical]);
    printf("Spoof: %s" . PHP_EOL, $likelihoodName[$spoof]);
    printf("Violence: %s" . PHP_EOL, $likelihoodName[$violence]);
    printf("Racy: %s" . PHP_EOL, $likelihoodName[$racy]);

    $imageAnnotator->close();
}

Python

Before trying this sample, follow the Python setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Python API reference documentation .

def detect_safe_search(path):
    """Detects unsafe features in the file."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.types.Image(content=content)

    response = client.safe_search_detection(image=image)
    safe = response.safe_search_annotation

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Safe search:')

    print('adult: {}'.format(likelihood_name[safe.adult]))
    print('medical: {}'.format(likelihood_name[safe.medical]))
    print('spoofed: {}'.format(likelihood_name[safe.spoof]))
    print('violence: {}'.format(likelihood_name[safe.violence]))
    print('racy: {}'.format(likelihood_name[safe.racy]))

Ruby

Before trying this sample, follow the Ruby setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Ruby API reference documentation .

# image_path = "Path to local image file, eg. './image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.safe_search_detection image: image_path

response.responses.each do |res|
  safe_search = res.safe_search_annotation

  puts "Adult:    #{safe_search.adult}"
  puts "Spoof:    #{safe_search.spoof}"
  puts "Medical:  #{safe_search.medical}"
  puts "Violence: #{safe_search.violence}"
  puts "Racy:     #{safe_search.racy}"
end

Explicit content detection on a remote image

For your convenience, the Vision API can perform feature detection directly on an image file located in Google Cloud Storage or on the Web without the need to send the contents of the image file in the body of your request.

REST & CMD LINE

Before using any of the request data below, make the following replacements:

  • cloud-storage-image-uri: the path to a valid image file in a Cloud Storage bucket. You must at least have read privileges to the file. Example:
    • gs://my-storage-bucket/img/image1.png

HTTP method and URL:

POST https://vision.googleapis.com/v1/images:annotate

Request JSON body:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "type": "SAFE_SEARCH_DETECTION"
        }
      ]
    }
  ]
}

To send your request, choose one of these options:

curl

Save the request body in a file called request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

Save the request body in a file called request.json, and execute the following command:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

You should receive a JSON response similar to the following:

{
  "responses": [
    {
      "safeSearchAnnotation": {
        "adult": "UNLIKELY",
        "spoof": "VERY_UNLIKELY",
        "medical": "VERY_UNLIKELY",
        "violence": "LIKELY",
        "racy": "POSSIBLE"
      }
    }
  ]
}

C#

Before trying this sample, follow the C# setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API C# API reference documentation .

// Specify a Google Cloud Storage uri for the image
// or a publicly accessible HTTP or HTTPS uri.
var image = Image.FromUri(uri);
var client = ImageAnnotatorClient.Create();
var response = client.DetectSafeSearch(image);
Console.WriteLine("Adult: {0}", response.Adult.ToString());
Console.WriteLine("Spoof: {0}", response.Spoof.ToString());
Console.WriteLine("Medical: {0}", response.Medical.ToString());
Console.WriteLine("Violence: {0}", response.Violence.ToString());
Console.WriteLine("Racy: {0}", response.Racy.ToString());

Go

Before trying this sample, follow the Go setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Go API reference documentation .


// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearchURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	props, err := client.DetectSafeSearch(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Safe Search properties:")
	fmt.Fprintln(w, "Adult:", props.Adult)
	fmt.Fprintln(w, "Medical:", props.Medical)
	fmt.Fprintln(w, "Racy:", props.Racy)
	fmt.Fprintln(w, "Spoofed:", props.Spoof)
	fmt.Fprintln(w, "Violence:", props.Violence)

	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Java API reference documentation .

public static void detectSafeSearchGcs(String gcsPath, PrintStream out) throws Exception,
    IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();
  Feature feat = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
      out.printf(
          "adult: %s\nmedical: %s\nspoofed: %s\nviolence: %s\nracy: %s\n",
          annotation.getAdult(),
          annotation.getMedical(),
          annotation.getSpoof(),
          annotation.getViolence(),
          annotation.getRacy());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Node.js API reference documentation .

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs safe search property detection on the remote file
const [result] = await client.safeSearchDetection(
  `gs://${bucketName}/${fileName}`
);
const detections = result.safeSearchAnnotation;
console.log(`Adult: ${detections.adult}`);
console.log(`Spoof: ${detections.spoof}`);
console.log(`Medical: ${detections.medical}`);
console.log(`Violence: ${detections.violence}`);

PHP

Before trying this sample, follow the PHP setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API PHP API reference documentation .

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_safe_search_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->safeSearchDetection($path);
    $safe = $response->getSafeSearchAnnotation();

    if ($safe) {
        $adult = $safe->getAdult();
        $medical = $safe->getMedical();
        $spoof = $safe->getSpoof();
        $violence = $safe->getViolence();
        $racy = $safe->getRacy();

        # names of likelihood from google.cloud.vision.enums
        $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
        'POSSIBLE', 'LIKELY', 'VERY_LIKELY'];

        printf("Adult: %s" . PHP_EOL, $likelihoodName[$adult]);
        printf("Medical: %s" . PHP_EOL, $likelihoodName[$medical]);
        printf("Spoof: %s" . PHP_EOL, $likelihoodName[$spoof]);
        printf("Violence: %s" . PHP_EOL, $likelihoodName[$violence]);
        printf("Racy: %s" . PHP_EOL, $likelihoodName[$racy]);
    } else {
        print('No Results.' . PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Before trying this sample, follow the Python setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Python API reference documentation .

def detect_safe_search_uri(uri):
    """Detects unsafe features in the file located in Google Cloud Storage or
    on the Web."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.types.Image()
    image.source.image_uri = uri

    response = client.safe_search_detection(image=image)
    safe = response.safe_search_annotation

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Safe search:')

    print('adult: {}'.format(likelihood_name[safe.adult]))
    print('medical: {}'.format(likelihood_name[safe.medical]))
    print('spoofed: {}'.format(likelihood_name[safe.spoof]))
    print('violence: {}'.format(likelihood_name[safe.violence]))
    print('racy: {}'.format(likelihood_name[safe.racy]))

Ruby

Before trying this sample, follow the Ruby setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Ruby API reference documentation .

# image_path = "Google Cloud Storage URI, eg. 'gs://my-bucket/image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.safe_search_detection image: image_path

response.responses.each do |res|
  safe_search = res.safe_search_annotation

  puts "Adult:    #{safe_search.adult}"
  puts "Spoof:    #{safe_search.spoof}"
  puts "Medical:  #{safe_search.medical}"
  puts "Violence: #{safe_search.violence}"
  puts "Racy:     #{safe_search.racy}"
end

GCLOUD COMMAND

To perform Safe Search detection, use the gcloud ml vision detect-safe-search command as shown in the following example:

gcloud ml vision detect-safe-search gs://my_bucket/input_file

Was this page helpful? Let us know how we did:

Send feedback about...

Cloud Vision API Documentation
Need help? Visit our support page.