Detecting Safe Search Properties

Safe Search Detection detects explicit content such as adult content or violent content within an image.

Running Safe Search Detection on a local image

Protocol

Refer to the images:annotate API endpoint for complete details.

To perform Safe Search Detection, make a POST request and provide the appropriate request body:

POST https://vision.googleapis.com/v1/images:annotate?key=YOUR_API_KEY
{
  "requests": [
    {
      "image": {
        "content": "/9j/7QBEUGhvdG9zaG9...base64-encoded-image-content...fXNWzvDEeYxxxzj/Coa6Bax//Z"
      },
      "features": [
        {
          "type": "SAFE_SEARCH_DETECTION"
        }
      ]
    }
  ]
}

See the AnnotateImageRequest reference documentation for more information on configuring the request body.

If the request is successful, the server returns a 200 OK HTTP status code and the response in JSON format:

{
  "responses": [
    {
      "safeSearchAnnotation": {
        "adult": "VERY_UNLIKELY",
        "spoof": "VERY_LIKELY",
        "medical": "UNLIKELY",
        "violence": "UNLIKELY",
        "racy": "VERY_UNLIKELY",
      }
    }
  ]
}

C#

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

// Load an image from a local file.
var image = Image.FromFile(filePath);
var client = ImageAnnotatorClient.Create();
var response = client.DetectSafeSearch(image);
Console.WriteLine("Adult: {0}", response.Adult.ToString());
Console.WriteLine("Spoof: {0}", response.Spoof.ToString());
Console.WriteLine("Medical: {0}", response.Medical.ToString());
Console.WriteLine("Violence: {0}", response.Violence.ToString());

Go

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearch(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	props, err := client.DetectSafeSearch(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Safe Search properties:")
	fmt.Fprintln(w, "Adult:", props.Adult)
	fmt.Fprintln(w, "Medical:", props.Medical)
	fmt.Fprintln(w, "Racy:", props.Racy)
	fmt.Fprintln(w, "Spoofed:", props.Spoof)
	fmt.Fprintln(w, "Violence:", props.Violence)

	return nil
}

Java

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

public static void detectSafeSearch(String filePath, PrintStream out) throws Exception,
    IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  Feature feat = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
      out.printf(
          "adult: %s\nmedical: %s\nspoofed: %s\nviolence: %s\nracy: %s\n",
          annotation.getAdult(),
          annotation.getMedical(),
          annotation.getSpoof(),
          annotation.getViolence(),
          annotation.getRacy());
    }
  }
}

Node.js

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs safe search detection on the local file
client
  .safeSearchDetection(fileName)
  .then(results => {
    const detections = results[0].safeSearchAnnotation;

    console.log('Safe search:');
    console.log(`Adult: ${detections.adult}`);
    console.log(`Medical: ${detections.medical}`);
    console.log(`Spoof: ${detections.spoof}`);
    console.log(`Violence: ${detections.violence}`);
    console.log(`Racy: ${detections.racy}`);
  })
  .catch(err => {
    console.error('ERROR:', err);
  });

PHP

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'path/to/your/image.jpg'

function detect_safe_search($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $image = file_get_contents($path);
    $response = $imageAnnotator->safeSearchDetection($image);
    $safe = $response->getSafeSearchAnnotation();

    $adult = $safe->getAdult();
    $medical = $safe->getMedical();
    $spoof = $safe->getSpoof();
    $violence = $safe->getViolence();
    $racy = $safe->getRacy();

    # names of likelihood from google.cloud.vision.enums
    $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
    'POSSIBLE','LIKELY', 'VERY_LIKELY'];

    printf("Adult: %s" . PHP_EOL, $likelihoodName[$adult]);
    printf("Medical: %s" . PHP_EOL, $likelihoodName[$medical]);
    printf("Spoof: %s" . PHP_EOL, $likelihoodName[$spoof]);
    printf("Violence: %s" . PHP_EOL, $likelihoodName[$violence]);
    printf("Racy: %s" . PHP_EOL, $likelihoodName[$racy]);

    $imageAnnotator->close();
}

Python

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

def detect_safe_search(path):
    """Detects unsafe features in the file."""
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.types.Image(content=content)

    response = client.safe_search_detection(image=image)
    safe = response.safe_search_annotation

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Safe search:')

    print('adult: {}'.format(likelihood_name[safe.adult]))
    print('medical: {}'.format(likelihood_name[safe.medical]))
    print('spoofed: {}'.format(likelihood_name[safe.spoof]))
    print('violence: {}'.format(likelihood_name[safe.violence]))
    print('racy: {}'.format(likelihood_name[safe.racy]))

Ruby

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

# project_id = "Your Google Cloud project ID"
# image_path = "Path to local image file, eg. './image.png'"

require "google/cloud/vision"

vision = Google::Cloud::Vision.new project: project_id
image  = vision.image image_path

safe_search = image.safe_search

puts "Adult:    #{safe_search.adult?}"
puts "Spoof:    #{safe_search.spoof?}"
puts "Medical:  #{safe_search.medical?}"
puts "Violence: #{safe_search.violence?}"

Running Safe Search Detection on a Remote Image

For your convenience, the Vision API can perform Safe Search Detection directly on an image file located in Google Cloud Storage or on the Web without the need to send the contents of the image file in the body of your request.

Protocol

Refer to the images:annotate API endpoint for complete details.

To perform Safe Search Detection, make a POST request and provide the appropriate request body:

POST https://vision.googleapis.com/v1/images:annotate?key=YOUR_API_KEY
{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME"
        }
      },
      "features": [
        {
          "type": "SAFE_SEARCH_DETECTION"
        }
      ]
    }
  ]
}

See the AnnotateImageRequest reference documentation for more information on configuring the request body.

If the request is successful, the server returns a 200 OK HTTP status code and the response in JSON format:

{
  "responses": [
    {
      "safeSearchAnnotation": {
        "adult": "VERY_UNLIKELY",
        "spoof": "VERY_LIKELY",
        "medical": "UNLIKELY",
        "violence": "UNLIKELY",
        "racy": "VERY_UNLIKELY",
      }
    }
  ]
}

C#

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

// Specify a Google Cloud Storage uri for the image
// or a publicly accessible HTTP or HTTPS uri.
var image = Image.FromUri(uri);
var client = ImageAnnotatorClient.Create();
var response = client.DetectSafeSearch(image);
Console.WriteLine("Adult: {0}", response.Adult.ToString());
Console.WriteLine("Spoof: {0}", response.Spoof.ToString());
Console.WriteLine("Medical: {0}", response.Medical.ToString());
Console.WriteLine("Violence: {0}", response.Violence.ToString());

Go

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearchURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	props, err := client.DetectSafeSearch(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Safe Search properties:")
	fmt.Fprintln(w, "Adult:", props.Adult)
	fmt.Fprintln(w, "Medical:", props.Medical)
	fmt.Fprintln(w, "Racy:", props.Racy)
	fmt.Fprintln(w, "Spoofed:", props.Spoof)
	fmt.Fprintln(w, "Violence:", props.Violence)

	return nil
}

Java

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

public static void detectSafeSearchGcs(String gcsPath, PrintStream out) throws Exception,
    IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();
  Feature feat = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
      out.printf(
          "adult: %s\nmedical: %s\nspoofed: %s\nviolence: %s\nracy: %s\n",
          annotation.getAdult(),
          annotation.getMedical(),
          annotation.getSpoof(),
          annotation.getViolence(),
          annotation.getRacy());
    }
  }
}

Node.js

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs safe search property detection on the remote file
client
  .safeSearchDetection(`gs://${bucketName}/${fileName}`)
  .then(results => {
    const detections = results[0].safeSearchAnnotation;

    console.log(`Adult: ${detections.adult}`);
    console.log(`Spoof: ${detections.spoof}`);
    console.log(`Medical: ${detections.medical}`);
    console.log(`Violence: ${detections.violence}`);
  })
  .catch(err => {
    console.error('ERROR:', err);
  });

PHP

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_safe_search_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->safeSearchDetection($path);
    $safe = $response->getSafeSearchAnnotation();

    if ($safe) {
        $adult = $safe->getAdult();
        $medical = $safe->getMedical();
        $spoof = $safe->getSpoof();
        $violence = $safe->getViolence();
        $racy = $safe->getRacy();

        # names of likelihood from google.cloud.vision.enums
        $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
        'POSSIBLE','LIKELY', 'VERY_LIKELY'];

        printf("Adult: %s" . PHP_EOL, $likelihoodName[$adult]);
        printf("Medical: %s" . PHP_EOL, $likelihoodName[$medical]);
        printf("Spoof: %s" . PHP_EOL, $likelihoodName[$spoof]);
        printf("Violence: %s" . PHP_EOL, $likelihoodName[$violence]);
        printf("Racy: %s" . PHP_EOL, $likelihoodName[$racy]);
    } else {
        print('No Results.' . PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

def detect_safe_search_uri(uri):
    """Detects unsafe features in the file located in Google Cloud Storage or
    on the Web."""
    client = vision.ImageAnnotatorClient()
    image = vision.types.Image()
    image.source.image_uri = uri

    response = client.safe_search_detection(image=image)
    safe = response.safe_search_annotation

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Safe search:')

    print('adult: {}'.format(likelihood_name[safe.adult]))
    print('medical: {}'.format(likelihood_name[safe.medical]))
    print('spoofed: {}'.format(likelihood_name[safe.spoof]))
    print('violence: {}'.format(likelihood_name[safe.violence]))
    print('racy: {}'.format(likelihood_name[safe.racy]))

Ruby

For more on installing and creating a Vision API client, refer to Vision API Client Libraries.

# project_id = "Your Google Cloud project ID"
# image_path = "Google Cloud Storage URI, eg. 'gs://my-bucket/image.png'"

require "google/cloud/vision"

vision = Google::Cloud::Vision.new project: project_id
image  = vision.image image_path

safe_search = image.safe_search

puts "Adult:    #{safe_search.adult?}"
puts "Spoof:    #{safe_search.spoof?}"
puts "Medical:  #{safe_search.medical?}"
puts "Violence: #{safe_search.violence?}"

Try it

Try Safe Search detection below. You can use the image specified already (gs://bucket-name-123/demo-image.jpg) by clicking Execute, or you can specify your own image in its place.

Was this page helpful? Let us know how we did:

Send feedback about...

Cloud Vision API Documentation