Python の RAG クイックスタート

このページでは、Vertex AI SDK を使用して RAG Engine タスクを実行する方法について説明します。

Google Cloud コンソールを準備する

RAG Engine を使用する手順は次のとおりです。

  1. Vertex AI SDK for Python をインストールします

  2. Google Cloud コンソールで次のコマンドを実行して、プロジェクトを設定します。

    gcloud config set {project}

  3. 次のコマンドを実行して、ログインを承認します。

    gcloud auth application-default login

RAG Engine を実行する

このサンプルコードをコピーして Google Cloud コンソールに貼り付け、RAG Engine を実行します。

Python

Vertex AI SDK for Python のインストールまたは更新の方法については、Vertex AI SDK for Python をインストールするをご覧ください。 詳細については、Python API リファレンス ドキュメントをご覧ください。

from vertexai.preview import rag
from vertexai.preview.generative_models import GenerativeModel, Tool
import vertexai

# Create a RAG Corpus, Import Files, and Generate a response

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# display_name = "test_corpus"
# paths = ["https://drive.google.com/file/d/123", "gs://my_bucket/my_files_dir"]  # Supports Google Cloud Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Create RagCorpus
# Configure embedding model, for example "text-embedding-004".
embedding_model_config = rag.EmbeddingModelConfig(
    publisher_model="publishers/google/models/text-embedding-004"
)

rag_corpus = rag.create_corpus(
    display_name=display_name,
    embedding_model_config=embedding_model_config,
)

# Import Files to the RagCorpus
rag.import_files(
    rag_corpus.name,
    paths,
    chunk_size=512,  # Optional
    chunk_overlap=100,  # Optional
    max_embedding_requests_per_min=900,  # Optional
)

# Direct context retrieval
response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=rag_corpus.name,
            # Optional: supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="What is RAG and why it is helpful?",
    similarity_top_k=10,  # Optional
    vector_distance_threshold=0.5,  # Optional
)
print(response)

# Enhance generation
# Create a RAG retrieval tool
rag_retrieval_tool = Tool.from_retrieval(
    retrieval=rag.Retrieval(
        source=rag.VertexRagStore(
            rag_resources=[
                rag.RagResource(
                    rag_corpus=rag_corpus.name,  # Currently only 1 corpus is allowed.
                    # Optional: supply IDs from `rag.list_files()`.
                    # rag_file_ids=["rag-file-1", "rag-file-2", ...],
                )
            ],
            similarity_top_k=3,  # Optional
            vector_distance_threshold=0.5,  # Optional
        ),
    )
)
# Create a gemini-pro model instance
rag_model = GenerativeModel(
    model_name="gemini-1.5-flash-001", tools=[rag_retrieval_tool]
)

# Generate response
response = rag_model.generate_content("What is RAG and why it is helpful?")
print(response.text)
# Example response:
#   RAG stands for Retrieval-Augmented Generation.
#   It's a technique used in AI to enhance the quality of responses
# ...

次のステップ