Testare i prompt di testo (IA generativa)

Testa un prompt di prova per generare idee utilizzando un modello di testo del publisher.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

C#

Prima di provare questo esempio, segui le istruzioni di configurazione C# riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API C# Vertex AI documentazione di riferimento.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Collections.Generic;
using System.Linq;
using Value = Google.Protobuf.WellKnownTypes.Value;

public class PredictTextPromptSample
{
    public string PredictTextPrompt(
        string projectId = "your-project-id",
        string locationId = "us-central1",
        string publisher = "google",
        string model = "text-bison@001"
    )
    {
        // Initialize client that will be used to send requests.
        // This client only needs to be created
        // once, and can be reused for multiple requests.
        var client = new PredictionServiceClientBuilder
        {
            Endpoint = $"{locationId}-aiplatform.googleapis.com"
        }.Build();

        // Configure the parent resource
        var endpoint = EndpointName.FromProjectLocationPublisherModel(projectId, locationId, publisher, model);

        // Initialize request argument(s)
        var prompt = "Give me ten interview questions for the role of program manager.";

        var instanceValue = Value.ForStruct(new()
        {
            Fields =
            {
                ["prompt"] = Value.ForString(prompt)
            }
        });

        var instances = new List<Value>
        {
            instanceValue
        };

        var parameters = Value.ForStruct(new()
        {
            Fields =
            {
                { "temperature", new Value { NumberValue = 0.2 } },
                { "maxOutputTokens", new Value { NumberValue = 256 } },
                { "topP", new Value { NumberValue = 0.95 } },
                { "topK", new Value { NumberValue = 40 } }
            }
        });

        // Make the request
        var response = client.Predict(endpoint, instances, parameters);

        // Parse and return the content.
        var content = response.Predictions.First().StructValue.Fields["content"].StringValue;
        Console.WriteLine($"Content: {content}");
        return content;
    }
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictTextPromptSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details of designing text prompts for supported large language models:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/text/text-overview
    String instance =
        "{ \"prompt\": " + "\"Give me ten interview questions for the role of program manager.\"}";
    String parameters =
        "{\n"
            + "  \"temperature\": 0.2,\n"
            + "  \"maxOutputTokens\": 256,\n"
            + "  \"topP\": 0.95,\n"
            + "  \"topK\": 40\n"
            + "}";
    String project = "YOUR_PROJECT_ID";
    String location = "us-central1";
    String publisher = "google";
    String model = "text-bison@001";

    predictTextPrompt(instance, parameters, project, location, publisher, model);
  }

  // Get a text prompt from a supported text model
  public static void predictTextPrompt(
      String instance,
      String parameters,
      String project,
      String location,
      String publisher,
      String model)
      throws IOException {
    String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue.build());

      // Use Value.Builder to convert instance to a dynamically typed value that can be
      // processed by the service.
      Value.Builder parameterValueBuilder = Value.newBuilder();
      JsonFormat.parser().merge(parameters, parameterValueBuilder);
      Value parameterValue = parameterValueBuilder.build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
      System.out.println(predictResponse);
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Node.js Vertex AI documentazione di riferimento.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Update these variables before running the sample.
 */
const PROJECT_ID = process.env.CAIP_PROJECT_ID;
const LOCATION = 'us-central1';
const PUBLISHER = 'google';
const MODEL = 'text-bison@001';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function callPredict() {
  // Configure the parent resource
  const endpoint = `projects/${PROJECT_ID}/locations/${LOCATION}/publishers/${PUBLISHER}/models/${MODEL}`;

  const prompt = {
    prompt:
      'Give me ten interview questions for the role of program manager.',
  };
  const instanceValue = helpers.toValue(prompt);
  const instances = [instanceValue];

  const parameter = {
    temperature: 0.2,
    maxOutputTokens: 256,
    topP: 0.95,
    topK: 40,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const response = await predictionServiceClient.predict(request);
  console.log('Get text prompt response');
  console.log(response);
}

callPredict();

Ruby

Prima di provare questo esempio, segui le istruzioni per la configurazione di Ruby nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Ruby di Vertex AI.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

require "google/cloud/ai_platform/v1"

##
# Vertex AI Predict Text Prompt
#
# @param project_id [String] Your Google Cloud project (e.g. "my-project")
# @param location_id [String] Your Processor Location (e.g. "us-central1")
# @param publisher [String] The Model Publisher (e.g. "google")
# @param model [String] The Model Identifier (e.g. "text-bison@001")
#
def predict_text_prompt project_id:, location_id:, publisher:, model:
  # Create the Vertex AI client.
  client = ::Google::Cloud::AIPlatform::V1::PredictionService::Client.new do |config|
    config.endpoint = "#{location_id}-aiplatform.googleapis.com"
  end

  # Build the resource name from the project.
  endpoint = client.endpoint_path(
    project: project_id,
    location: location_id,
    publisher: publisher,
    model: model
  )

  prompt = "Give me ten interview questions for the role of program manager."

  # Initialize the request arguments
  instance = Google::Protobuf::Value.new(
    struct_value: Google::Protobuf::Struct.new(
      fields: {
        "prompt" => Google::Protobuf::Value.new(
          string_value: prompt
        )
      }
    )
  )

  instances = [instance]

  parameters = Google::Protobuf::Value.new(
    struct_value: Google::Protobuf::Struct.new(
      fields: {
        "temperature" => Google::Protobuf::Value.new(number_value: 0.2),
        "maxOutputTokens" => Google::Protobuf::Value.new(number_value: 256),
        "topP" => Google::Protobuf::Value.new(number_value: 0.95),
        "topK" => Google::Protobuf::Value.new(number_value: 40)
      }
    )
  )

  # Make the prediction request
  response = client.predict endpoint: endpoint, instances: instances, parameters: parameters

  # Handle the prediction response
  puts "Predict Response"
  puts response
end

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta Browser di esempio Google Cloud.