Clasifica texto con un modelo de lenguaje extenso (IA generativa)

Realizar tareas de clasificación que asignan una clase o categoría al texto Puedes especificar una lista de categorías desde la cual elegir o permitir que el modelo elija una de sus propias categorías.

Muestra de código

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

// Text Classification with a Large Language Model
public class PredictTextClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String instance =
        "{ \"content\": \"What is the topic for a given news headline?\n"
            + "- business\n"
            + "- entertainment\n"
            + "- health\n"
            + "- sports\n"
            + "- technology\n"
            + "\n"
            + "Text: Pixel 7 Pro Expert Hands On Review, the Most Helpful Google Phones.\n"
            + "The answer is: technology\n"
            + "\n"
            + "Text: Quit smoking?\n"
            + "The answer is: health\n"
            + "\n"
            + "Text: Roger Federer reveals why he touched Rafael Nadals hand while they were"
            + " crying\n"
            + "The answer is: sports\n"
            + "\n"
            + "Text: Business relief from Arizona minimum-wage hike looking more remote\n"
            + "The answer is: business\n"
            + "\n"
            + "Text: #TomCruise has arrived in Bari, Italy for #MissionImpossible.\n"
            + "The answer is: entertainment\n"
            + "\n"
            + "Text: CNBC Reports Rising Digital Profit as Print Advertising Falls\n"
            + "The answer is:\"}";
    String parameters =
        "{\n"
            + "  \"temperature\": 0,\n"
            + "  \"maxDecodeSteps\": 5,\n"
            + "  \"topP\": 0,\n"
            + "  \"topK\": 1\n"
            + "}";
    String project = "YOUR_PROJECT_ID";
    String publisher = "google";
    String model = "text-bison@001";

    predictTextClassification(instance, parameters, project, publisher, model);
  }

  static void predictTextClassification(
      String instance, String parameters, String project, String publisher, String model)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue.build());

      Value.Builder parameterValueBuilder = Value.newBuilder();
      JsonFormat.parser().merge(parameters, parameterValueBuilder);
      Value parameterValue = parameterValueBuilder.build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
    }
  }
}

¿Qué sigue?

Para buscar y filtrar muestras de código para otros Google Cloud productos, consulta el Google Cloud navegador de muestras.