Previsione per l'analisi del sentiment del testo

Consente di ottenere la previsione per l'analisi del sentiment del testo utilizzando il metodo di previsione.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI utilizzando le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento per l'API JavaVertex AI.

Per eseguire l'autenticazione su Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictTextSentimentAnalysisSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String content = "YOUR_TEXT_CONTENT";
    String endpointId = "YOUR_ENDPOINT_ID";

    predictTextSentimentAnalysis(project, content, endpointId);
  }

  static void predictTextSentimentAnalysis(String project, String content, String endpointId)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";

      // Use JsonObject to ensure safe serialization of the content; handles characters like `"`.
      JsonObject contentJsonObject = new JsonObject();
      contentJsonObject.addProperty("content", content);

      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      Value parameter = Value.newBuilder().setNumberValue(0).setNumberValue(5).build();
      Value.Builder instance = Value.newBuilder();
      JsonFormat.parser().merge(contentJsonObject.toString(), instance);

      List<Value> instances = new ArrayList<>();
      instances.add(instance.build());

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameter);
      System.out.println("Predict Text Sentiment Analysis Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {
        System.out.format("\tPrediction: %s\n", prediction);
      }
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI utilizzando le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento per l'API Node.jsVertex AI.

Per eseguire l'autenticazione su Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const text = "YOUR_PREDICTION_TEXT";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {instance, prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Model Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictTextSentimentAnalysis() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;

  const instanceObj = new instance.TextSentimentPredictionInstance({
    content: text,
  });
  const instanceVal = instanceObj.toValue();

  const instances = [instanceVal];
  const request = {
    endpoint,
    instances,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict text sentiment analysis response:');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);

  console.log('\nPredictions :');
  for (const predictionResultValue of response.predictions) {
    const predictionResult =
      prediction.TextSentimentPredictionResult.fromValue(
        predictionResultValue
      );
    console.log(`\tSentiment measure: ${predictionResult.sentiment}`);
  }
}
predictTextSentimentAnalysis();

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI utilizzando le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento per l'API PythonVertex AI.

Per eseguire l'autenticazione su Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import predict
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def predict_text_sentiment_analysis_sample(
    project: str,
    endpoint_id: str,
    content: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
    instance = predict.instance.TextSentimentPredictionInstance(
        content=content,
    ).to_value()
    instances = [instance]
    parameters_dict = {}
    parameters = json_format.ParseDict(parameters_dict, Value())
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.predict(
        endpoint=endpoint, instances=instances, parameters=parameters
    )
    print("response")
    print(" deployed_model_id:", response.deployed_model_id)
    # See gs://google-cloud-aiplatform/schema/predict/prediction/text_sentiment_1.0.0.yaml for the format of the predictions.
    predictions = response.predictions
    for prediction in predictions:
        print(" prediction:", dict(prediction))

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta il browser di esempio Google Cloud.