커스텀 학습 모델 예측

예측 메서드를 사용하여 커스텀 학습 모델을 위한 예측을 가져옵니다.

이 코드 샘플이 포함된 문서 페이지

컨텍스트에서 사용된 코드 샘플을 보려면 다음 문서를 참조하세요.

코드 샘플

자바

Vertex AI용 클라이언트 라이브러리를 설치하고 사용하는 방법은 Vertex AI 클라이언트 라이브러리를 참조하세요. 자세한 내용은 Vertex AI 자바 API 참조 문서를 확인하세요.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictRequest;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.ListValue;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.List;

public class PredictCustomTrainedModelSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String instance = "[{ “feature_column_a”: “value”, “feature_column_b”: “value”}]";
    String project = "YOUR_PROJECT_ID";
    String endpointId = "YOUR_ENDPOINT_ID";
    predictCustomTrainedModel(project, endpointId, instance);
  }

  static void predictCustomTrainedModel(String project, String endpointId, String instance)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      ListValue.Builder listValue = ListValue.newBuilder();
      JsonFormat.parser().merge(instance, listValue);
      List<Value> instanceList = listValue.getValuesList();

      PredictRequest predictRequest =
          PredictRequest.newBuilder()
              .setEndpoint(endpointName.toString())
              .addAllInstances(instanceList)
              .build();
      PredictResponse predictResponse = predictionServiceClient.predict(predictRequest);

      System.out.println("Predict Custom Trained model Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());
      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {
        System.out.format("\tPrediction: %s\n", prediction);
      }
    }
  }
}

Node.js

Vertex AI용 클라이언트 라이브러리를 설치하고 사용하는 방법은 Vertex AI 클라이언트 라이브러리를 참조하세요. 자세한 내용은 Vertex AI Node.js API 참조 문서를 확인하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const filename = "YOUR_PREDICTION_FILE_NAME";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const util = require('util');
const {readFile} = require('fs');
const readFileAsync = util.promisify(readFile);

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictCustomTrainedModel() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
  const parameters = {
    structValue: {
      fields: {},
    },
  };
  const instanceDict = await readFileAsync(filename, 'utf8');
  const instanceValue = JSON.parse(instanceDict);
  const instance = {
    structValue: {
      fields: {
        Age: {stringValue: instanceValue['Age']},
        Balance: {stringValue: instanceValue['Balance']},
        Campaign: {stringValue: instanceValue['Campaign']},
        Contact: {stringValue: instanceValue['Contact']},
        Day: {stringValue: instanceValue['Day']},
        Default: {stringValue: instanceValue['Default']},
        Deposit: {stringValue: instanceValue['Deposit']},
        Duration: {stringValue: instanceValue['Duration']},
        Housing: {stringValue: instanceValue['Housing']},
        Job: {stringValue: instanceValue['Job']},
        Loan: {stringValue: instanceValue['Loan']},
        MaritalStatus: {stringValue: instanceValue['MaritalStatus']},
        Month: {stringValue: instanceValue['Month']},
        PDays: {stringValue: instanceValue['PDays']},
        POutcome: {stringValue: instanceValue['POutcome']},
        Previous: {stringValue: instanceValue['Previous']},
      },
    },
  };

  const instances = [instance];
  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict custom trained model response');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
  }
}
predictCustomTrainedModel();

Python

Vertex AI용 클라이언트 라이브러리를 설치하고 사용하는 방법은 Vertex AI 클라이언트 라이브러리를 참조하세요. 자세한 내용은 Vertex AI Python API 참조 문서를 확인하세요.

from typing import Dict, List, Union

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def predict_custom_trained_model_sample(
    project: str,
    endpoint_id: str,
    instances: Union[Dict, List[Dict]],
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    """
    `instances` can be either single instance of type dict or a list
    of instances.
    """
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
    # The format of each instance should conform to the deployed model's prediction input schema.
    instances = instances if type(instances) == list else [instances]
    instances = [
        json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
    ]
    parameters_dict = {}
    parameters = json_format.ParseDict(parameters_dict, Value())
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.predict(
        endpoint=endpoint, instances=instances, parameters=parameters
    )
    print("response")
    print(" deployed_model_id:", response.deployed_model_id)
    # The predictions are a google.protobuf.Value representation of the model's predictions.
    predictions = response.predictions
    for prediction in predictions:
        print(" prediction:", dict(prediction))

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.