Importa datos para el reconocimiento de acciones de video

Importa datos para el reconocimiento de acciones de video con el método import_data.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;

public class ImportDataVideoActionRecognitionSample {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String datasetId = "DATASET_ID";
    String gcsSourceUri = "GCS_SOURCE_URI";
    importDataVideoActionRecognitionSample(project, datasetId, gcsSourceUri);
  }

  static void importDataVideoActionRecognitionSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient client = DatasetServiceClient.create(settings)) {
      GcsSource gcsSource = GcsSource.newBuilder().addUris(gcsSourceUri).build();
      ImportDataConfig importConfig0 =
          ImportDataConfig.newBuilder()
              .setGcsSource(gcsSource)
              .setImportSchemaUri(
                  "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
                      + "video_action_recognition_io_format_1.0.0.yaml")
              .build();
      List<ImportDataConfig> importConfigs = new ArrayList<>();
      importConfigs.add(importConfig0);
      DatasetName name = DatasetName.of(project, location, datasetId);
      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> response =
          client.importDataAsync(name, importConfigs);

      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Operation name: %s\n", response.getInitialFuture().get().getName());

      // OperationFuture.get() will block until the operation is finished.
      ImportDataResponse importDataResponse = response.get();
      System.out.format("importDataResponse: %s\n", importDataResponse);
    }
  }
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import aiplatform


def import_data_video_action_recognition_sample(
    project: str,
    dataset_id: str,
    gcs_source_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 1800,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    import_configs = [
        {
            "gcs_source": {"uris": [gcs_source_uri]},
            "import_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/ioformat/video_action_recognition_io_format_1.0.0.yaml",
        }
    ]
    name = client.dataset_path(project=project, location=location, dataset=dataset_id)
    response = client.import_data(name=name, import_configs=import_configs)
    print("Long running operation:", response.operation.name)
    import_data_response = response.result(timeout=timeout)
    print("import_data_response:", import_data_response)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros Google Cloud productos, consulta el Google Cloud navegador de muestras.