获取超参数调节作业
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
使用 get_hyperparameter_tuning_job 方法获取超参数调节作业。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[],[],null,["# Get a hyperparameter tuning job\n\nGets a hyperparameter tuning job using the get_hyperparameter_tuning_job method.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Create a hyperparameter tuning job](/vertex-ai/docs/training/using-hyperparameter-tuning)\n\nCode sample\n-----------\n\n### Java\n\n\nBefore trying this sample, follow the Java setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Java API\nreference documentation](/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.HyperparameterTuningJob.html;\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.HyperparameterTuningJobName.html;\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.JobServiceClient.html;\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.JobServiceSettings.html;\n import java.io.IOException;\n\n public class GetHyperparameterTuningJobSample {\n\n public static void main(String[] args) throws IOException {\n // TODO(developer): Replace these variables before running the sample.\n String project = \"PROJECT\";\n String hyperparameterTuningJobId = \"HYPERPARAMETER_TUNING_JOB_ID\";\n getHyperparameterTuningJobSample(project, hyperparameterTuningJobId);\n }\n\n static void getHyperparameterTuningJobSample(String project, String hyperparameterTuningJobId)\n throws IOException {\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.JobServiceSettings.html settings =\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.JobServiceSettings.html.newBuilder()\n .setEndpoint(\"us-central1-aiplatform.googleapis.com:443\")\n .build();\n String location = \"us-central1\";\n\n // Initialize client that will be used to send requests. This client only needs to be created\n // once, and can be reused for multiple requests. After completing all of your requests, call\n // the \"close\" method on the client to safely clean up any remaining background resources.\n try (https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.JobServiceClient.html client = https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.JobServiceClient.html.create(settings)) {\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.HyperparameterTuningJobName.html name =\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.HyperparameterTuningJobName.html.of(project, location, hyperparameterTuningJobId);\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.HyperparameterTuningJob.html response = client.getHyperparameterTuningJob(name);\n System.out.format(\"response: %s\\n\", response);\n }\n }\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n /**\n * TODO(developer): Uncomment these variables before running the sample.\\\n * (Not necessary if passing values as arguments)\n */\n\n // const tuningJobId = 'YOUR_TUNING_JOB_ID';\n // const project = 'YOUR_PROJECT_ID';\n // const location = 'YOUR_PROJECT_LOCATION';\n\n // Imports the Google Cloud Model Service Client library\n const {JobServiceClient} = require('https://cloud.google.com/nodejs/docs/reference/aiplatform/latest/overview.html');\n\n // Specifies the location of the api endpoint\n const clientOptions = {\n apiEndpoint: 'us-central1-aiplatform.googleapis.com',\n };\n\n // Instantiates a client\n const jobServiceClient = new https://cloud.google.com/nodejs/docs/reference/aiplatform/latest/overview.html(clientOptions);\n\n async function getHyperparameterTuningJob() {\n // Configure the parent resource\n const name = jobServiceClient.hyperparameterTuningJobPath(\n project,\n location,\n tuningJobId\n );\n const request = {\n name,\n };\n // Get and print out a list of all the endpoints for this resource\n const [response] =\n await jobServiceClient.getHyperparameterTuningJob(request);\n\n console.log('Get hyperparameter tuning job response');\n console.log(`\\tDisplay name: ${response.displayName}`);\n console.log(`\\tTuning job resource name: ${response.name}`);\n console.log(`\\tJob status: ${response.state}`);\n }\n getHyperparameterTuningJob();\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google.cloud import aiplatform\n\n\n def get_hyperparameter_tuning_job_sample(\n project: str,\n hyperparameter_tuning_job_id: str,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform.gapic.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.job_service.JobServiceClient.html(client_options=client_options)\n name = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.job_service.JobServiceClient.html#google_cloud_aiplatform_v1_services_job_service_JobServiceClient_hyperparameter_tuning_job_path(\n project=project,\n location=location,\n hyperparameter_tuning_job=hyperparameter_tuning_job_id,\n )\n response = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.job_service.JobServiceClient.html#google_cloud_aiplatform_v1_services_job_service_JobServiceClient_get_hyperparameter_tuning_job(name=name)\n print(\"response:\", response)\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]