使用 export_model 方法导出用于视频操作识别的模型。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
Java
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Java 设置说明执行操作。如需了解详情,请参阅 Vertex AI Java API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.ExportModelOperationMetadata;
import com.google.cloud.aiplatform.v1.ExportModelRequest;
import com.google.cloud.aiplatform.v1.ExportModelResponse;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
public class ExportModelVideoActionRecognitionSample {
public static void main(String[] args)
throws IOException, ExecutionException, InterruptedException {
// TODO(developer): Replace these variables before running the sample.
String project = "PROJECT";
String modelId = "MODEL_ID";
String gcsDestinationOutputUriPrefix = "GCS_DESTINATION_OUTPUT_URI_PREFIX";
String exportFormat = "EXPORT_FORMAT";
exportModelVideoActionRecognitionSample(
project, modelId, gcsDestinationOutputUriPrefix, exportFormat);
}
static void exportModelVideoActionRecognitionSample(
String project, String modelId, String gcsDestinationOutputUriPrefix, String exportFormat)
throws IOException, ExecutionException, InterruptedException {
ModelServiceSettings settings =
ModelServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
String location = "us-central1";
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ModelServiceClient client = ModelServiceClient.create(settings)) {
GcsDestination gcsDestination =
GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
ExportModelRequest.OutputConfig outputConfig =
ExportModelRequest.OutputConfig.newBuilder()
.setArtifactDestination(gcsDestination)
.setExportFormatId(exportFormat)
.build();
ModelName name = ModelName.of(project, location, modelId);
OperationFuture<ExportModelResponse, ExportModelOperationMetadata> response =
client.exportModelAsync(name, outputConfig);
// You can use OperationFuture.getInitialFuture to get a future representing the initial
// response to the request, which contains information while the operation is in progress.
System.out.format("Operation name: %s\n", response.getInitialFuture().get().getName());
// OperationFuture.get() will block until the operation is finished.
ExportModelResponse exportModelResponse = response.get();
System.out.format("exportModelResponse: %s\n", exportModelResponse);
}
}
}
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
from google.cloud import aiplatform
def export_model_video_action_recognition_sample(
project: str,
model_id: str,
gcs_destination_output_uri_prefix: str,
export_format: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
timeout: int = 300,
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.ModelServiceClient(client_options=client_options)
gcs_destination = {"output_uri_prefix": gcs_destination_output_uri_prefix}
output_config = {
"artifact_destination": gcs_destination,
"export_format_id": export_format,
}
name = client.model_path(project=project, location=location, model=model_id)
response = client.export_model(name=name, output_config=output_config)
print("Long running operation:", response.operation.name)
print("output_info:", response.metadata.output_info)
export_model_response = response.result(timeout=timeout)
print("export_model_response:", export_model_response)
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。