Explicación para tabular

Obtiene una explicación para tabular mediante el método explicativo.

Muestra de código

Python

Si deseas obtener información para instalar y usar la biblioteca cliente de Vertex AI, consulta las bibliotecas cliente de Vertex AI. Si deseas obtener más información, consulta la documentación de referencia de la API de Vertex AI para Python.

from typing import Dict

from google.cloud import aiplatform_v1beta1
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def explain_tabular_sample(
    project: str,
    endpoint_id: str,
    instance_dict: Dict,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform_v1beta1.PredictionServiceClient(client_options=client_options)
    # The format of each instance should conform to the deployed model's prediction input schema.
    instance = json_format.ParseDict(instance_dict, Value())
    instances = [instance]
    # tabular models do not have additional parameters
    parameters_dict = {}
    parameters = json_format.ParseDict(parameters_dict, Value())
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.explain(
        endpoint=endpoint, instances=instances, parameters=parameters
    )
    print("response")
    print(" deployed_model_id:", response.deployed_model_id)
    explanations = response.explanations
    for explanation in explanations:
        print(" explanation")
        # Feature attributions.
        attributions = explanation.attributions
        for attribution in attributions:
            print("  attribution")
            print("   baseline_output_value:", attribution.baseline_output_value)
            print("   instance_output_value:", attribution.instance_output_value)
            print("   output_display_name:", attribution.output_display_name)
            print("   approximation_error:", attribution.approximation_error)
            print("   output_name:", attribution.output_name)
            output_index = attribution.output_index
            for output_index in output_index:
                print("   output_index:", output_index)
    predictions = response.predictions
    for prediction in predictions:
        print(" prediction:", dict(prediction))

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.