Eliminazione di un set di dati

Elimina un set di dati utilizzando il metodo delete_dataset.

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione Go riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Go di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.


import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"
	"google.golang.org/api/option"
)

func deleteDataset(w io.Writer, projectID, location, datasetID string) error {
	// projectID := "my-project"
	// location := "us-central1"
	// datasetID := "my-dataset"

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	clientOption := option.WithEndpoint(apiEndpoint)

	ctx := context.Background()
	aiplatformService, err := aiplatform.NewDatasetClient(ctx, clientOption)
	if err != nil {
		return err
	}
	defer aiplatformService.Close()

	req := &aiplatformpb.DeleteDatasetRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/datasets/%s",
			projectID, location, datasetID),
	}

	op, err := aiplatformService.DeleteDataset(ctx, req)
	if err != nil {
		return err
	}

	err = op.Wait(ctx)
	if err != nil {
		return ctx.Err()
	}

	fmt.Fprintf(w, "Deleted dataset: %s\n", datasetID)
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteDatasetSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    deleteDatasetSample(project, datasetId);
  }

  static void deleteDatasetSample(String project, String datasetId)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      DatasetName datasetName = DatasetName.of(project, location, datasetId);

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          datasetServiceClient.deleteDatasetAsync(datasetName);
      System.out.format("Operation name: %s\n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(300, TimeUnit.SECONDS);

      System.out.format("Deleted Dataset.");
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Node.js Vertex AI documentazione di riferimento.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function deleteDataset() {
  // Configure the resource
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  const request = {name};

  // Delete Dataset Request
  const [response] = await datasetServiceClient.deleteDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Delete dataset response:\n', result);
}
deleteDataset();

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import aiplatform


def delete_dataset_sample(
    project: str,
    dataset_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    name = client.dataset_path(project=project, location=location, dataset=dataset_id)
    response = client.delete_dataset(name=name)
    print("Long running operation:", response.operation.name)
    delete_dataset_response = response.result(timeout=timeout)
    print("delete_dataset_response:", delete_dataset_response)

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta Browser di esempio Google Cloud.