Borra un trabajo de etiquetado de datos

Borra un trabajo de etiquetado de datos con el método delete_data_labeling_job.

Muestra de código

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DataLabelingJobName;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteDataLabelingJobSample {
  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String dataLabelingJobId = "YOUR_DATA_LABELING_JOB_ID";
    deleteDataLabelingJob(project, dataLabelingJobId);
  }

  static void deleteDataLabelingJob(String project, String dataLabelingJobId)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";

      DataLabelingJobName dataLabelingJobName =
          DataLabelingJobName.of(project, location, dataLabelingJobId);

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          jobServiceClient.deleteDataLabelingJobAsync(dataLabelingJobName);
      System.out.format("Operation name: %s\n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(300, TimeUnit.SECONDS);

      System.out.format("Deleted Data Labeling Job.");
    }
  }
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import aiplatform


def delete_data_labeling_job_sample(
    project: str,
    data_labeling_job_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    name = client.data_labeling_job_path(
        project=project, location=location, data_labeling_job=data_labeling_job_id
    )
    response = client.delete_data_labeling_job(name=name)
    print("Long running operation:", response.operation.name)
    delete_data_labeling_job_response = response.result(timeout=timeout)
    print("delete_data_labeling_job_response:", delete_data_labeling_job_response)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.