使用 create_training_pipeline 方法创建用于视频对象跟踪的训练流水线。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
Java
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Java 设置说明执行操作。如需了解详情,请参阅 Vertex AI Java API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoObjectTrackingInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoObjectTrackingInputs.ModelType;
import com.google.rpc.Status;
import java.io.IOException;
public class CreateTrainingPipelineVideoObjectTrackingSample {
public static void main(String[] args) throws IOException {
String trainingPipelineVideoObjectTracking =
"YOUR_TRAINING_PIPELINE_VIDEO_OBJECT_TRACKING_DISPLAY_NAME";
String datasetId = "YOUR_DATASET_ID";
String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
String project = "YOUR_PROJECT_ID";
createTrainingPipelineVideoObjectTracking(
trainingPipelineVideoObjectTracking, datasetId, modelDisplayName, project);
}
static void createTrainingPipelineVideoObjectTracking(
String trainingPipelineVideoObjectTracking,
String datasetId,
String modelDisplayName,
String project)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/"
+ "automl_video_object_tracking_1.0.0.yaml";
LocationName locationName = LocationName.of(project, location);
AutoMlVideoObjectTrackingInputs trainingTaskInputs =
AutoMlVideoObjectTrackingInputs.newBuilder().setModelType(ModelType.CLOUD).build();
InputDataConfig inputDataConfig =
InputDataConfig.newBuilder().setDatasetId(datasetId).build();
Model modelToUpload = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(trainingPipelineVideoObjectTracking)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(ValueConverter.toValue(trainingTaskInputs))
.setInputDataConfig(inputDataConfig)
.setModelToUpload(modelToUpload)
.build();
TrainingPipeline createTrainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);
System.out.println("Create Training Pipeline Video Object Tracking Response");
System.out.format("Name: %s\n", createTrainingPipelineResponse.getName());
System.out.format("Display Name: %s\n", createTrainingPipelineResponse.getDisplayName());
System.out.format(
"Training Task Definition %s\n",
createTrainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"Training Task Inputs: %s\n",
createTrainingPipelineResponse.getTrainingTaskInputs().toString());
System.out.format(
"Training Task Metadata: %s\n",
createTrainingPipelineResponse.getTrainingTaskMetadata().toString());
System.out.format("State: %s\n", createTrainingPipelineResponse.getState().toString());
System.out.format(
"Create Time: %s\n", createTrainingPipelineResponse.getCreateTime().toString());
System.out.format("StartTime %s\n", createTrainingPipelineResponse.getStartTime().toString());
System.out.format("End Time: %s\n", createTrainingPipelineResponse.getEndTime().toString());
System.out.format(
"Update Time: %s\n", createTrainingPipelineResponse.getUpdateTime().toString());
System.out.format("Labels: %s\n", createTrainingPipelineResponse.getLabelsMap().toString());
InputDataConfig inputDataConfigResponse = createTrainingPipelineResponse.getInputDataConfig();
System.out.println("Input Data config");
System.out.format("Dataset Id: %s\n", inputDataConfigResponse.getDatasetId());
System.out.format("Annotations Filter: %s\n", inputDataConfigResponse.getAnnotationsFilter());
FractionSplit fractionSplit = inputDataConfigResponse.getFractionSplit();
System.out.println("Fraction split");
System.out.format("Training Fraction: %s\n", fractionSplit.getTrainingFraction());
System.out.format("Validation Fraction: %s\n", fractionSplit.getValidationFraction());
System.out.format("Test Fraction: %s\n", fractionSplit.getTestFraction());
FilterSplit filterSplit = inputDataConfigResponse.getFilterSplit();
System.out.println("Filter Split");
System.out.format("Training Filter: %s\n", filterSplit.getTrainingFilter());
System.out.format("Validation Filter: %s\n", filterSplit.getValidationFilter());
System.out.format("Test Filter: %s\n", filterSplit.getTestFilter());
PredefinedSplit predefinedSplit = inputDataConfigResponse.getPredefinedSplit();
System.out.println("Predefined Split");
System.out.format("Key: %s\n", predefinedSplit.getKey());
TimestampSplit timestampSplit = inputDataConfigResponse.getTimestampSplit();
System.out.println("Timestamp Split");
System.out.format("Training Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("Validation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("Test Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("Key: %s\n", timestampSplit.getKey());
Model modelResponse = createTrainingPipelineResponse.getModelToUpload();
System.out.println("Model To Upload");
System.out.format("Name: %s\n", modelResponse.getName());
System.out.format("Display Name: %s\n", modelResponse.getDisplayName());
System.out.format("Description: %s\n", modelResponse.getDescription());
System.out.format("Metadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("Metadata: %s\n", modelResponse.getMetadata());
System.out.format("Training Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("Artifact Uri: %s\n", modelResponse.getArtifactUri());
System.out.format(
"Supported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList().toString());
System.out.format(
"Supported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList().toString());
System.out.format(
"Supported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList().toString());
System.out.format("Create Time: %s\n", modelResponse.getCreateTime());
System.out.format("Update Time: %s\n", modelResponse.getUpdateTime());
System.out.format("Labels: %s\n", modelResponse.getLabelsMap());
Status status = createTrainingPipelineResponse.getError();
System.out.println("Error");
System.out.format("Code: %s\n", status.getCode());
System.out.format("Message: %s\n", status.getMessage());
}
}
}
Node.js
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Node.js 设置说明执行操作。如需了解详情,请参阅 Vertex AI Node.js API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
const ModelType = definition.AutoMlVideoObjectTrackingInputs.ModelType;
// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);
async function createTrainingPipelineVideoObjectTracking() {
// Configure the parent resource
const parent = `projects/${project}/locations/${location}`;
const trainingTaskInputsObj =
new definition.AutoMlVideoObjectTrackingInputs({
modelType: ModelType.CLOUD,
});
const trainingTaskInputs = trainingTaskInputsObj.toValue();
const modelToUpload = {displayName: modelDisplayName};
const inputDataConfig = {datasetId: datasetId};
const trainingPipeline = {
displayName: trainingPipelineDisplayName,
trainingTaskDefinition:
'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_object_tracking_1.0.0.yaml',
trainingTaskInputs,
inputDataConfig,
modelToUpload,
};
const request = {
parent,
trainingPipeline,
};
// Create training pipeline request
const [response] =
await pipelineServiceClient.createTrainingPipeline(request);
console.log('Create training pipeline video object tracking response');
console.log(`Name : ${response.name}`);
console.log('Raw response:');
console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineVideoObjectTracking();
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import trainingjob
def create_training_pipeline_video_object_tracking_sample(
project: str,
display_name: str,
dataset_id: str,
model_display_name: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
training_task_inputs = trainingjob.definition.AutoMlVideoObjectTrackingInputs(
model_type="CLOUD",
).to_value()
training_pipeline = {
"display_name": display_name,
"training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_object_tracking_1.0.0.yaml",
"training_task_inputs": training_task_inputs,
"input_data_config": {"dataset_id": dataset_id},
"model_to_upload": {"display_name": model_display_name},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_training_pipeline(
parent=parent, training_pipeline=training_pipeline
)
print("response:", response)
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。