create_training_pipeline 메서드를 사용하여 이미지 객체 감지를 위한 학습 파이프라인을 만듭니다.
더 살펴보기
이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.
코드 샘플
Java
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageObjectDetectionInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageObjectDetectionInputs.ModelType;
import com.google.rpc.Status;
import java.io.IOException;
public class CreateTrainingPipelineImageObjectDetectionSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
String project = "YOUR_PROJECT_ID";
String datasetId = "YOUR_DATASET_ID";
String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
createTrainingPipelineImageObjectDetectionSample(
project, trainingPipelineDisplayName, datasetId, modelDisplayName);
}
static void createTrainingPipelineImageObjectDetectionSample(
String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/"
+ "automl_image_object_detection_1.0.0.yaml";
LocationName locationName = LocationName.of(project, location);
AutoMlImageObjectDetectionInputs autoMlImageObjectDetectionInputs =
AutoMlImageObjectDetectionInputs.newBuilder()
.setModelType(ModelType.CLOUD_HIGH_ACCURACY_1)
.setBudgetMilliNodeHours(20000)
.setDisableEarlyStopping(false)
.build();
InputDataConfig trainingInputDataConfig =
InputDataConfig.newBuilder().setDatasetId(datasetId).build();
Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(trainingPipelineDisplayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(ValueConverter.toValue(autoMlImageObjectDetectionInputs))
.setInputDataConfig(trainingInputDataConfig)
.setModelToUpload(model)
.build();
TrainingPipeline trainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);
System.out.println("Create Training Pipeline Image Object Detection Response");
System.out.format("Name: %s\n", trainingPipelineResponse.getName());
System.out.format("Display Name: %s\n", trainingPipelineResponse.getDisplayName());
System.out.format(
"Training Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"Training Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
System.out.format(
"Training Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
System.out.format("State: %s\n", trainingPipelineResponse.getState());
System.out.format("Create Time: %s\n", trainingPipelineResponse.getCreateTime());
System.out.format("StartTime %s\n", trainingPipelineResponse.getStartTime());
System.out.format("End Time: %s\n", trainingPipelineResponse.getEndTime());
System.out.format("Update Time: %s\n", trainingPipelineResponse.getUpdateTime());
System.out.format("Labels: %s\n", trainingPipelineResponse.getLabelsMap());
InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
System.out.println("Input Data Config");
System.out.format("Dataset Id: %s", inputDataConfig.getDatasetId());
System.out.format("Annotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());
FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
System.out.println("Fraction Split");
System.out.format("Training Fraction: %s\n", fractionSplit.getTrainingFraction());
System.out.format("Validation Fraction: %s\n", fractionSplit.getValidationFraction());
System.out.format("Test Fraction: %s\n", fractionSplit.getTestFraction());
FilterSplit filterSplit = inputDataConfig.getFilterSplit();
System.out.println("Filter Split");
System.out.format("Training Filter: %s\n", filterSplit.getTrainingFilter());
System.out.format("Validation Filter: %s\n", filterSplit.getValidationFilter());
System.out.format("Test Filter: %s\n", filterSplit.getTestFilter());
PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
System.out.println("Predefined Split");
System.out.format("Key: %s\n", predefinedSplit.getKey());
TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
System.out.println("Timestamp Split");
System.out.format("Training Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("Validation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("Test Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("Key: %s\n", timestampSplit.getKey());
Model modelResponse = trainingPipelineResponse.getModelToUpload();
System.out.println("Model To Upload");
System.out.format("Name: %s\n", modelResponse.getName());
System.out.format("Display Name: %s\n", modelResponse.getDisplayName());
System.out.format("Description: %s\n", modelResponse.getDescription());
System.out.format("Metadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("Metadata: %s\n", modelResponse.getMetadata());
System.out.format("Training Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("Artifact Uri: %s\n", modelResponse.getArtifactUri());
System.out.format(
"Supported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList());
System.out.format(
"Supported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList());
System.out.format(
"Supported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList());
System.out.format("Create Time: %s\n", modelResponse.getCreateTime());
System.out.format("Update Time: %s\n", modelResponse.getUpdateTime());
System.out.format("Labels: %sn\n", modelResponse.getLabelsMap());
PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
System.out.println("Predict Schemata");
System.out.format("Instance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
System.out.format("Parameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
System.out.format("Prediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());
for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
System.out.println("Supported Export Format");
System.out.format("Id: %s\n", exportFormat.getId());
}
ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
System.out.println("Container Spec");
System.out.format("Image Uri: %s\n", modelContainerSpec.getImageUri());
System.out.format("Command: %s\n", modelContainerSpec.getCommandList());
System.out.format("Args: %s\n", modelContainerSpec.getArgsList());
System.out.format("Predict Route: %s\n", modelContainerSpec.getPredictRoute());
System.out.format("Health Route: %s\n", modelContainerSpec.getHealthRoute());
for (EnvVar envVar : modelContainerSpec.getEnvList()) {
System.out.println("Env");
System.out.format("Name: %s\n", envVar.getName());
System.out.format("Value: %s\n", envVar.getValue());
}
for (Port port : modelContainerSpec.getPortsList()) {
System.out.println("Port");
System.out.format("Container Port: %s\n", port.getContainerPort());
}
for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
System.out.println("Deployed Model");
System.out.format("Endpoint: %s\n", deployedModelRef.getEndpoint());
System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}
Status status = trainingPipelineResponse.getError();
System.out.println("Error");
System.out.format("Code: %s\n", status.getCode());
System.out.format("Message: %s\n", status.getMessage());
}
}
}
Node.js
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
const ModelType = definition.AutoMlImageObjectDetectionInputs.ModelType;
// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);
async function createTrainingPipelineImageObjectDetection() {
// Configure the parent resource
const parent = `projects/${project}/locations/${location}`;
const trainingTaskInputsObj =
new definition.AutoMlImageObjectDetectionInputs({
disableEarlyStopping: false,
modelType: ModelType.CLOUD_1,
budgetMilliNodeHours: 20000,
});
const trainingTaskInputs = trainingTaskInputsObj.toValue();
const modelToUpload = {displayName: modelDisplayName};
const inputDataConfig = {datasetId: datasetId};
const trainingPipeline = {
displayName: trainingPipelineDisplayName,
trainingTaskDefinition:
'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_object_detection_1.0.0.yaml',
trainingTaskInputs,
inputDataConfig,
modelToUpload,
};
const request = {
parent,
trainingPipeline,
};
// Create training pipeline request
const [response] =
await pipelineServiceClient.createTrainingPipeline(request);
console.log('Create training pipeline image object detection response');
console.log(`Name : ${response.name}`);
console.log('Raw response:');
console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineImageObjectDetection();
Python
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Python 설정 안내를 따르세요. 자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import trainingjob
def create_training_pipeline_image_object_detection_sample(
project: str,
display_name: str,
dataset_id: str,
model_display_name: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
training_task_inputs = trainingjob.definition.AutoMlImageObjectDetectionInputs(
model_type="CLOUD_HIGH_ACCURACY_1",
budget_milli_node_hours=20000,
disable_early_stopping=False,
).to_value()
training_pipeline = {
"display_name": display_name,
"training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_object_detection_1.0.0.yaml",
"training_task_inputs": training_task_inputs,
"input_data_config": {"dataset_id": dataset_id},
"model_to_upload": {"display_name": model_display_name},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_training_pipeline(
parent=parent, training_pipeline=training_pipeline
)
print("response:", response)
다음 단계
다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.