Crea un trabajo de ajuste de hiperparámetros

Crea un trabajo de ajuste de hiperparámetros con el método create_ hyperparameter_tuning_job.

Muestra de código

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import com.google.cloud.aiplatform.v1.AcceleratorType;
import com.google.cloud.aiplatform.v1.ContainerSpec;
import com.google.cloud.aiplatform.v1.CustomJobSpec;
import com.google.cloud.aiplatform.v1.HyperparameterTuningJob;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.StudySpec;
import com.google.cloud.aiplatform.v1.WorkerPoolSpec;
import java.io.IOException;

public class CreateHyperparameterTuningJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String displayName = "DISPLAY_NAME";
    String containerImageUri = "CONTAINER_IMAGE_URI";
    createHyperparameterTuningJobSample(project, displayName, containerImageUri);
  }

  static void createHyperparameterTuningJobSample(
      String project, String displayName, String containerImageUri) throws IOException {
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      StudySpec.MetricSpec metric0 =
          StudySpec.MetricSpec.newBuilder()
              .setMetricId("accuracy")
              .setGoal(StudySpec.MetricSpec.GoalType.MAXIMIZE)
              .build();
      StudySpec.ParameterSpec.DoubleValueSpec doubleValueSpec =
          StudySpec.ParameterSpec.DoubleValueSpec.newBuilder()
              .setMinValue(0.001)
              .setMaxValue(0.1)
              .build();
      StudySpec.ParameterSpec parameter0 =
          StudySpec.ParameterSpec.newBuilder()
              // Learning rate.
              .setParameterId("lr")
              .setDoubleValueSpec(doubleValueSpec)
              .build();
      StudySpec studySpec =
          StudySpec.newBuilder().addMetrics(metric0).addParameters(parameter0).build();
      MachineSpec machineSpec =
          MachineSpec.newBuilder()
              .setMachineType("n1-standard-4")
              .setAcceleratorType(AcceleratorType.NVIDIA_TESLA_T4)
              .setAcceleratorCount(1)
              .build();
      ContainerSpec containerSpec =
          ContainerSpec.newBuilder().setImageUri(containerImageUri).build();
      WorkerPoolSpec workerPoolSpec0 =
          WorkerPoolSpec.newBuilder()
              .setMachineSpec(machineSpec)
              .setReplicaCount(1)
              .setContainerSpec(containerSpec)
              .build();
      CustomJobSpec trialJobSpec =
          CustomJobSpec.newBuilder().addWorkerPoolSpecs(workerPoolSpec0).build();
      HyperparameterTuningJob hyperparameterTuningJob =
          HyperparameterTuningJob.newBuilder()
              .setDisplayName(displayName)
              .setMaxTrialCount(2)
              .setParallelTrialCount(1)
              .setMaxFailedTrialCount(1)
              .setStudySpec(studySpec)
              .setTrialJobSpec(trialJobSpec)
              .build();
      LocationName parent = LocationName.of(project, location);
      HyperparameterTuningJob response =
          client.createHyperparameterTuningJob(parent, hyperparameterTuningJob);
      System.out.format("response: %s\n", response);
      System.out.format("Name: %s\n", response.getName());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 * (Not necessary if passing values as arguments)
 */
/*
const displayName = 'YOUR HYPERPARAMETER TUNING JOB;
const containerImageUri = 'TUNING JOB CONTAINER URI;
const project = 'YOUR PROJECT ID';
const location = 'us-central1';
  */
// Imports the Google Cloud Pipeline Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function createHyperParameterTuningJob() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  // Create the hyperparameter tuning job configuration
  const hyperparameterTuningJob = {
    displayName,
    maxTrialCount: 2,
    parallelTrialCount: 1,
    maxFailedTrialCount: 1,
    studySpec: {
      metrics: [
        {
          metricId: 'accuracy',
          goal: 'MAXIMIZE',
        },
      ],
      parameters: [
        {
          parameterId: 'lr',
          doubleValueSpec: {
            minValue: 0.001,
            maxValue: 0.1,
          },
        },
      ],
    },
    trialJobSpec: {
      workerPoolSpecs: [
        {
          machineSpec: {
            machineType: 'n1-standard-4',
            acceleratorType: 'NVIDIA_TESLA_K80',
            acceleratorCount: 1,
          },
          replicaCount: 1,
          containerSpec: {
            imageUri: containerImageUri,
            command: [],
            args: [],
          },
        },
      ],
    },
  };

  const [response] = await jobServiceClient.createHyperparameterTuningJob({
    parent,
    hyperparameterTuningJob,
  });

  console.log('Create hyperparameter tuning job response:');
  console.log(`\tDisplay name: ${response.displayName}`);
  console.log(`\tTuning job resource name: ${response.name}`);
  console.log(`\tJob status: ${response.state}`);
}

createHyperParameterTuningJob();

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import aiplatform


def create_hyperparameter_tuning_job_sample(
    project: str,
    display_name: str,
    container_image_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    hyperparameter_tuning_job = {
        "display_name": display_name,
        "max_trial_count": 2,
        "parallel_trial_count": 1,
        "max_failed_trial_count": 1,
        "study_spec": {
            "metrics": [
                {
                    "metric_id": "accuracy",
                    "goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MAXIMIZE,
                }
            ],
            "parameters": [
                {
                    # Learning rate.
                    "parameter_id": "lr",
                    "double_value_spec": {"min_value": 0.001, "max_value": 0.1},
                },
            ],
        },
        "trial_job_spec": {
            "worker_pool_specs": [
                {
                    "machine_spec": {
                        "machine_type": "n1-standard-4",
                        "accelerator_type": aiplatform.gapic.AcceleratorType.NVIDIA_TESLA_K80,
                        "accelerator_count": 1,
                    },
                    "replica_count": 1,
                    "container_spec": {
                        "image_uri": container_image_uri,
                        "command": [],
                        "args": [],
                    },
                }
            ]
        },
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_hyperparameter_tuning_job(
        parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job
    )
    print("response:", response)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.