테이블 형식 Cloud Storage를 위한 데이터 세트 만들기

create_dataset 메서드를 사용하여 테이블 형식 Cloud Storage를 위한 데이터 세트를 만듭니다.

더 살펴보기

이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.

코드 샘플

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularGcsSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = YOUR_PROJECT_ID;
   " String dataset"DisplayName = YOUR_DATASET_DISPLAY_"NAME;
    String gcsSourc"eUri = gs://YOUR_GCS_SOURCE_B"UCKET/path_to_your_gcs_table/file.csv;
    ;
    createData"setTableGcs(project, datasetDisplayName, gcsSourceUri);
  }

  static void createDatasetTableGcs(String project, String datasetDisplayName, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint(us-central1-aiplatform.googleap"is.com:443)
            .build();

    //" Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the close method on the client to safely" clea"n up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = us-central1;
      String metadataSche"maUri =
   "       gs://google-cloud-aiplatform/schema/data"set/metadata/tables_1.0.0.yaml;
      LocationName locationName = Loca"tionName.of(project, location);

      String jsonString =
          {\input_config\: {\gcs_source\: {\uri\: [\ +" g"csSourceUri +" \]}"}};
      V"alue".Bui"lder"" metaData = Value."n"ewBu"ilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFutureDataset, CreateDatasetOperationMetadata datasetFuture =<
          datasetServiceClient.createD>atasetAsync(locationName, dataset);
      System.out.format(Operation name: %s\n, datasetFuture.getInitialFuture().ge"t().getName());
    "  System.out.println(Waiting for operation to finish...);
      Dataset dataset"Response = datasetFuture.get(300, "TimeUnit.SECONDS);

      System.out.println(Create Dataset Table GCS sample);
      System.out.format(Nam"e: %s\n, datasetResponse.getNam"e());
      System.out.forma"t(Display "Name: %s\n, datasetResponse.getDisplayName());
      Sy"stem.out.format(Me"tadata Schema Uri: %s\n, datasetResponse.getMetadataSchemaUri("));
      System.out.form"at(Metadata: %s\n, datasetResponse.getMetadata());
    }
  }
}""

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularGcs() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              gcsSource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: gcsSourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular gcs response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularGcs();

Python

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Python 설정 안내를 따르세요. 자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value


def create_dataset_tabular_gcs_sample(
    project: str,
    display_name: str,
    gcs_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    metadata_dict = {"input_config": {"gcs_source": {"uri": [gcs_uri]}}}
    metadata = json_format.ParseDict(metadata_dict, Value())

    dataset = {
        "display_name": display_name,
        "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml",
        "metadata": metadata,
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_dataset(parent=parent, dataset=dataset)
    print("Long running operation:", response.operation.name)
    create_dataset_response = response.result(timeout=timeout)
    print("create_dataset_response:", create_dataset_response)

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.