创建图片数据集

使用 create_dataset 方法创建图片数据集。

深入探索

如需查看包含此代码示例的详细文档,请参阅以下内容:

代码示例

Java

在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Java 设置说明执行操作。如需了解详情,请参阅 Vertex AI Java API 参考文档

如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetImageSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    createDatasetImageSample(project, datasetDisplayName);
  }

  static void createDatasetImageSample(String project, String datasetDisplayName)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(120, TimeUnit.SECONDS);

      System.out.println("Create Image Dataset Response");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
      System.out.format("Create Time: %s\n", datasetResponse.getCreateTime());
      System.out.format("Update Time: %s\n", datasetResponse.getUpdateTime());
      System.out.format("Labels: %s\n", datasetResponse.getLabelsMap());
    }
  }
}

Node.js

在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Node.js 设置说明执行操作。如需了解详情,请参阅 Vertex AI Node.js API 参考文档

如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = "YOUR_DATASTE_DISPLAY_NAME";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetImage() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml',
  };
  const request = {
    parent,
    dataset,
  };

  // Create Dataset Request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset image response');
  console.log(`Name : ${result.name}`);
  console.log(`Display name : ${result.displayName}`);
  console.log(`Metadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`Metadata : ${JSON.stringify(result.metadata)}`);
  console.log(`Labels : ${JSON.stringify(result.labels)}`);
}
createDatasetImage();

Python

在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。如需了解详情,请参阅 Vertex AI Python API 参考文档

如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

from google.cloud import aiplatform

def create_dataset_image_sample(
    project: str,
    display_name: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    dataset = {
        "display_name": display_name,
        "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml",
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_dataset(parent=parent, dataset=dataset)
    print("Long running operation:", response.operation.name)
    create_dataset_response = response.result(timeout=timeout)
    print("create_dataset_response:", create_dataset_response)

Terraform

如需了解如何应用或移除 Terraform 配置,请参阅基本 Terraform 命令。 如需了解详情,请参阅 Terraform 提供程序参考文档

resource "google_vertex_ai_dataset" "image_dataset" {
  display_name        = "image-dataset"
  metadata_schema_uri = "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml"
  region              = "us-central1"
}

后续步骤

如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器