使用 create_data_labeling_job 方法创建用于主动学习的数据标签作业。
代码示例
Java
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Java 设置说明执行操作。如需了解详情,请参阅 Vertex AI Java API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import com.google.cloud.aiplatform.v1.ActiveLearningConfig;
import com.google.cloud.aiplatform.v1.DataLabelingJob;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
public class CreateDataLabelingJobActiveLearningSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "PROJECT";
String displayName = "DISPLAY_NAME";
String dataset = "DATASET";
String instructionUri = "INSTRUCTION_URI";
String inputsSchemaUri = "INPUTS_SCHEMA_URI";
String annotationSpec = "ANNOTATION_SPEC";
createDataLabelingJobActiveLearningSample(
project, displayName, dataset, instructionUri, inputsSchemaUri, annotationSpec);
}
static void createDataLabelingJobActiveLearningSample(
String project,
String displayName,
String dataset,
String instructionUri,
String inputsSchemaUri,
String annotationSpec)
throws IOException {
JobServiceSettings settings =
JobServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
String location = "us-central1";
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (JobServiceClient client = JobServiceClient.create(settings)) {
JsonArray jsonAnnotationSpecs = new JsonArray();
jsonAnnotationSpecs.add(annotationSpec);
JsonObject jsonInputs = new JsonObject();
jsonInputs.add("annotation_specs", jsonAnnotationSpecs);
Value.Builder inputsBuilder = Value.newBuilder();
JsonFormat.parser().merge(jsonInputs.toString(), inputsBuilder);
Value inputs = inputsBuilder.build();
ActiveLearningConfig activeLearningConfig =
ActiveLearningConfig.newBuilder().setMaxDataItemCount(1).build();
String datasetName = DatasetName.of(project, location, dataset).toString();
DataLabelingJob dataLabelingJob =
DataLabelingJob.newBuilder()
.setDisplayName(displayName)
.addDatasets(datasetName)
.setLabelerCount(1)
.setInstructionUri(instructionUri)
.setInputsSchemaUri(inputsSchemaUri)
.setInputs(inputs)
.putAnnotationLabels(
"aiplatform.googleapis.com/annotation_set_name",
"data_labeling_job_active_learning")
.setActiveLearningConfig(activeLearningConfig)
.build();
LocationName parent = LocationName.of(project, location);
DataLabelingJob response = client.createDataLabelingJob(parent, dataLabelingJob);
System.out.format("response: %s\n", response);
System.out.format("Name: %s\n", response.getName());
}
}
}
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
def create_data_labeling_job_active_learning_sample(
project: str,
display_name: str,
dataset: str,
instruction_uri: str,
inputs_schema_uri: str,
annotation_spec: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.JobServiceClient(client_options=client_options)
inputs_dict = {"annotation_specs": [annotation_spec]}
inputs = json_format.ParseDict(inputs_dict, Value())
active_learning_config = {"max_data_item_count": 1}
data_labeling_job = {
"display_name": display_name,
# Full resource name: projects/{project}/locations/{location}/datasets/{dataset_id}
"datasets": [dataset],
"labeler_count": 1,
"instruction_uri": instruction_uri,
"inputs_schema_uri": inputs_schema_uri,
"inputs": inputs,
"annotation_labels": {
"aiplatform.googleapis.com/annotation_set_name": "data_labeling_job_active_learning"
},
"active_learning_config": active_learning_config,
}
parent = f"projects/{project}/locations/{location}"
response = client.create_data_labeling_job(
parent=parent, data_labeling_job=data_labeling_job
)
print("response:", response)
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。